أثر الانفاق الحكومي على النمو الاقتصادي لعينة من الدول النامية خلال الفترة (2005–2019) باستعمال معطيات panel

The effect of government spending on the economic growth of a sample of developing countries during the period (2005-2019) using panel data

> تـمـار أمبـن ¹*، **Tammar Amine**

a.tammar@univ-blida2.dz ، الجزائر ، 2 جامعة البليدة 2

تاريخ الاستلام: 15-08-2021 تاريخ القبول: 27-09-2021 تاريخ النشر: 26-10-2021

ملخص:

تهدف الدراسة إلى إبراز أثر الانفاق الحكومي على النمو الاقتصادي لعينة شملت 15 دولة نامية خلال الفترة (2019-2005) باستعمال معطيات بانل (Panel Data) حيث أشارت اختبارات المفاضلة ضرورة الاعتماد على نموذج التأثيرات الثابتة وفق أسلوب (robust) الذي اظهر قدرة تفسيرية جيدة و كشفت نتائج تقدير وجود علاقة معنوية موجبة للإنفاق الحكومي اتجاه النمو الاقتصادي وهو ما يتوافق مع أغلب الدراسات السابقة و النظرية الكينزية التي تشير أن الإنفاق الحكومي يمثل أحد عناصر الطلب الكلي الفعال الذي ينعكس إيجابا على الناتج المحلى الاجمالي.

الكلمات المفتاحية: إنفاق الحكومي، نمو اقتصادي، معطيات panel نموذج تأثيرات ثابتة.

تصنيف C33، F43،H50 : **JEL**

Abstract: The study aims to highlight the impact of government spending on the economic growth of a sample of 15 developing countries during the period (2005-2019) using panel data, where the differentiation tests indicated the need to rely on the fixed effects model according to the (robust) method, which showed a good explanatory ability. The results of the estimation revealed a positive significant relationship of government spending towards economic growth, which is consistent with most of the previous studies and the Keynesian theory, which indicates that government spending represents one of the elements of effective aggregate demand, which is positively reflected on the gross domestic product.

Keywords: government spending, economic growth, data panel, fixed effects model.

(JEL) Classification: C33 · F43 · H50.

* تـمار أميـن

1. مقدمة:

حظي موضوع الآثار الاقتصادية للإنفاق الحكومي اهتماما كبيرا لدى الباحثين لاسيما الأثر من المترتب على النمو الاقتصادي حيث اختلفت المدارس الاقتصادية عبر العصور في ابراز هدا الاثر من خلال الدور الذي تلعبه الحكومة في النشاط الاقتصادي، فمنها من تمسكت بالحرية الاقتصادية ومنها من اشارت الى تدخلها وبشكل عام ليس هناك اتفاق واضح بين الاقتصاديين حول هذا الأثر سلبيا كان أم إيجابيا، أضف إلى ذلك ليس هناك اتفاق عام حول اتجاه العلاقة فوفقا لقانون فاغنر (Wagner's Law) فإن اتجاه العلاقة من النمو الاقتصادي إلى الإنفاق العام، وعلى العكس منه كينز الذي يرى الإنفاق الحكومي عنصرا من عناصر الطلب الكلي الفعال وبالتالي فإن أثره ينعكس على الناتج الوطني ، ومن المحكومي عنصرا من عناصر الطلب الكلي الفعال وبالتالي فإن أثره ينعكس على الناتج الوطني ، ومن هنا يمكن استنباط مشكلة الدراسة و اتجاه علاقة الانفاق الحكومي مع النمو الاقتصادي والتي تعتبر نتيجة اقتصادية مهمة لحكومات الدول النامية ، خاصة و أن هذه البلدان يمثل القطاع العام (الإنفاق الحكومي) حصة كبيرة نسبياً "من موارد المجتمع الاقتصادية فيها .

1.1. إشكالية البحثية:

سنحاول في هذه الورقة البحثية دراسة الإشكالية التالية:

ما أثر الانفاق الحكومي على النمو الاقتصادي في الدول النامية محل الدراسة خلال الفترة (2005-2005)؟

2.1. أهمية البحث:

تكمن أهمية دراسة من أهمية الإنفاق الحكومي الذي يعتبر من الأدوات المالية المهمة والرئيسية للدولة فهو يعكس بدرجة كبيرة فعالية الحكومة ومدى تأثيرها في النشاط الاقتصادي كما تكمن اهمية البحث في اعتماد أساليب التحليل وأدوات القياس الاقتصادي الحديث وبالتالي فان هذا نوع من الدراسات والتحليل الاقتصادي قد يساعد في اتخاذ القرارات المستقبلية للدول النامية محل الدراسة التي تعاني من عديد الاختلالات الاقتصادية الكلية.

3.1 أهداف الدراسة:

تهدف الدراسة الى بناء نموذج قياسي لقياس أثر الانفاق الحكومي على النمو الاقتصادي لعينة تشمل 15 دولة نامية للفترة (2005–2019)، من خلال تقدير نماذج بانل الساكن، وتماشيا مع التوجهات الحديثة لأساليب نماذج الاقتصاد القياسي سنعتمد على نموذج التأثيرات الثابتة وفق أسلوب robust لتفسير وتحليل العلاقة الكمية بين متغيرتي الدراسة.

4.1. منهج الدراسة:

تم الاعتماد في الدراسة على المنهج الوصفي من خلال اقتباس مختلف الدراسات السابقة وعرض الخلفية النظرية للدراسة كما سنستعين بالمنهج القياسي باتباع الطرق القياسية والإحصائية لتقدير بيانات

بانل الساكن عن طريق الاستعانة ببرنامجين إحصائيين يتمثلان في (Eviwes 12) و (Stata 15).

2. الدراسات السابقة

من خلال اطلاعنا على عديد الدراسات السابقة التي تناولت الانفاق العمومي وأثره على النمو الاقتصادي وجدنا هناك اختلاف في تحديد طبيعة العلاقة وهذا راجع إلى تعقدها وعدم وضوح معالمها، وقد توصلنا إلى مجموعة من الدراسات الأكاديمية جاءت كالتالى:

دراسة (محمد معن ديوب، 2017) بعنوان أثر الانفاق الحكومي على النمو الاقتصادي في سورية دراسة قياسية للفترة (1990-2010)، هدف الباحث في هذه الدراسة التحقق من أثر الإنفاق الحكومي على النمو الاقتصادي السوري، باستخدام سلاسل زمنية ل32 سنة خلال الفترة (1990-2010) وبتطبيق منهج الانحدار الذاتي لفجوات الزمنية الموزعة المتباطئة، حيث تم إدخال الناتج المحلى الإجمالي الحقيقي كمتغير تابع، والإنفاق الحكومي الجاري والرأسمالي كمتغيرين مستقلين و توصل الي وجود أثر إيجابي ومعنوي للإنفاق العام الجاري على الناتج المحلى الإجمالي، وهذا ما دعم الفرضية الكينزية، في حين أن الإنفاق الحكومي الرأسمالي ليس له أثر معنوي على الناتج المحلى الإجمالي، وفسر الباحث ذلك على أن انخفاض حجم الإنفاق الحكومي الرأسمالي عن المستوى الذي يضمن تحفيز معدل نمو الناتج المحمى الإجمالي (ديوب، 2017) كما لفت انتباهنا دراسة (بن عزة هناء ، 2017) بعنوان أثر الانفاق الحكومي على النمو الاقتصادي في الجزائر دراسة قياسية للفترة (1990-2014) هدفت الباحثة الى معرفة أثر الإنفاق الحكومي (الاستهلاكي و الاستثماري) على النمو الاقتصادي في الجزائر خلال الفترة (1990-2014) بالاستعانة بمجموعة من الاختبارات التمهيدية تمثلت في الاستقرارية لتأكد من سكون السلاسل الزمنية، إلى جانب اختبار انجل جرانجر للسببية ،أما بغرض تقدير نموذج الدراسة فقد تمّ الاعتماد على طريقة الانحدار الذاتي المتجه VAR وقد توصلت أن الإنفاق الحكومي الاستهلاكي له أثر سالب و معنوي على النمو الاقتصادي في المدى القصير فقط، ليصبح هذا الأثر غير معنوي في المدي المتوسط و الطويل ، اما فيما يخص أثر الإنفاق الحكومي الاستثماري على الناتج المحلى الإجمالي فقد تبين ان له اثر موجب و معنوي على النمو الاقتصادي في المدى القصير فقط ليصبح هذا الأثر غير معنوي في المدى المتوسط و الطويل (عزة، 2017) و في دراسة (Lahirusham Gumasekara,2015) بعنوان (Lahirusham Gumasekara,2015) of on Economic Growth : A Study of Asian Countries قام الباحث بدراسة علاقة التوازن طويلة الأجل بين الانفاق الحكومي و النمو الاقتصادي في بعض الدول الاسيوية (سنغافورة، ماليزيا، تايلاند، كوريا الجنوبية، اليابان، الصين، سيريلانكا، الهند ويونان)بالاعتماد سببية غرانجر و panel fixed و وffect و باستخدام طريقة ols وجدت دراسته نتائج معنوية في البداية حيث أظهرت النتائج تأثيرا إيجابيا للإنفاق الحكومي على اجمالي الناتج المحلي في هذه الدول وهناك سببيه أحادية الاتجاه من النمو الأجل بين النمو الاقتصادي والإنفاق الحكومي ومن الإنفاق الحكومي إلى النمو الاقتصادي وبالتالي تم التأكد من ان الاقتصادي إلى الإنفاق الحكومي ومن الإنفاق الحكومي إلى النمو الاقتصادي وبالتالي تم التأكد من ان الدراسة تتوافق مع نظرية كينز وقانون فاغنجر أي أن الحكومة تلعب دورا أساسيا في تحقيق النمو ، (Gumasekara, 2015) ما عثرنا على دراسة (Chipaumira et al , 2014) بعنوان المهود (Gumasekara, 2015) المهود (Gumasekara, 2015) المهود (Government Spending On Economic Growth: Case OF South Africa (1990-2010) حيث قام الباحث بنتاول العلاقة السببية بين الانفاق العام و النمو الاقتصادي في جنوب افريقيا المنود الاقتصادي بالاعتماد على بيانات فصلية للفترة (2010 -1990) وتوصلت الدراسة الى عدم تأبيد وهو ما لا يتسق مع النظرية الكينزية التي توضح ان هناك تأثيرا ايجابيا للإنفاق على الناتج المحلي الاجمالي وارجع ذلك الى عدم كفاءة برامج الحكومة الاتفاقية في جنوب افريقيا. (Chipaumira & al, المحكوم)

3. الخلفية النظرية للدراسة

من خلال اطلاعنا على النظريات التي اختصت في تفسير العلاقة بين الإنفاق الحكومي ونمو الاقتصادي تم التوصل الى وجود مدرستان رئيسيتان تتعاكسان في طرحهما تمثلت الاولى بقانون فاجنر (Wagner's Law) واما الثانية فهي فرضية جون مينارد كينز (Keynesian Hypothesis) .

: (Wagner's Law) قانون فاجنر (1.3

يعد الاقتصادي الالماني ارثر فاجنر أول من شخص العلاقة بين الانفاق الحكومي و النمو الاقتصادي حيث اسماه قانون التوسع المستمر للنشاط الحكومي ، وهذا القانون يفيد بان الانفاق الحكومي ينمو باستمرار سواء بحجمه المطلق أو النسبي بسبب التطور الحاصل في المجتمع وعليه فان الحاجة الى زيادة النفقات العامة للدولة يعود الى ثلاث اسباب الاولى زيادة معدلات التصنيع و التحضر تؤدي الى زيادة الطلب على السلع و الخدمات العامة ومن ثم التوسع في الانفاق الحكومي اما ثانية يزداد الانفاق الحكومي بسبب نتائج التنمية الاقتصادية التي تؤدي الى التوسع في الخدمات التعليمية و الصحية والاجتماعية و الثقافية اما ثالث تنتخل الحكومة لإدارة و تمويل الاحتكارات الطبيعية ، و يقوم هذا القانون على دعم فرضية وجود علاقة بين النمو الاقتصادي و الانفاق الحكومي ويدعم نظرية الاقتصاد من خلال جانب الطلب حيث يدعو انصار هذه النظرية الى التدخل الحكومي الفعال في الاقتصاد من خلال الاقتصادي والاستقرار ، و تجدر الاشارة الى هذا الطرح يتعارض مع نظرية المالية العامة في جانب العرض من خلال طرح فكرة ان انفاق يشوه النمو عبر النسبب في زيادة مستوى الاسعار و التضخم . (عبيدة، 2015) صفحة 156)

كما يشير فاجنر الى العلاقة السببية طويلة المدى القائمة بين النفقات العامة كمغير داخلي و الدخل الوطني كمتغير خارجي يؤثر فيه و ان مرونة النفقات العامة الى الدخل الوطني هي اكبر من 1 وبتالي زيادة نصيب الفرد من الانفاق العام يكون اكبر من زياة نصيب الفرد من الدخل الوطني ، و قد استنتج من نظرية الاختيار العام تفسيرا اخرا لزيادة النفقات العامة و الذي يندرج ضمن التداخلات النظرية للعلاقة التي اقرها فاجنر بين النمو الاقتصادي والنفقات العامة وذلك انطلاقا من مفهوم تعظيم المصلحة الخاصة ، حيث ان ارتفاع معدلات النمو الاقتصادي يساهم في تخفيض الفروق الداخلية بين فئات المجتمع وهذا بدفع للبيروقراطيين الى محاولة تعظيم مصلحتهم الخاصة تحد غطاء تدعيم الكفاءة بزيادة النفقات العامة . (عياد، 2019، صفحة 120)

2.3. الفرضية الكينزية:

على اثر الأزمة الاقتصادية الحادة التي سادت النظام الرأسمالي وما أعقبها من حالة كساد كبير، ظهرت نظرية الاقتصادي البريطاني جون مينارد كينز والتي تعطى أهمية بالغة للإنفاق الحكومي كأحد مكونات الطلب الكلى الفعال وأحد أدوات السياسة المالية ، وكان الهدف الرئيسي من ذلك هو زيادة الطلب الفعال كشرط ضروري للتحقيق معدلات نمو مثالية في الأجل الطويل، ويتم ذلك عبر آلية المضاعف الذي بوضح أثر الإنفاق الحكومي على زيادة الدخل الوطني لهذا فالتوجه الكينزي يفترض أن سببية العلاقة تمتد من الإنفاق الحكومي إلى الدخل الوطني عبر قدرته على خلق دخول فردية جديدة ، ومن ثم زيادة القوة الشرائية، ومفهوم المضاعف في كل النماذج الكينزية يستد على الميزة الخاصة للإنفاق العام، وبالتالي يعامل الإنفاق الحكومي كمتغير خارجي. (عبدالحميد، 2018، صفحة 259)

4. عرض متغيرات ونموذج الدراسة

بهدف الإجابة على إشكالية الدراسة سيتم الاستعانة بأساليب تحليل بيانات السلاسل الزمنية المقطعية panel data من خلال تقدير النموذج التجميعي و نموذج التأثيرات الثابتة و التأثيرات العشوائية أما عن أفراد العينة فهي تشمل 15 دولة نامية منها افريقية و أسيوية تمثلت في :فيتنام الفلبين ، السنغال، أوغندا ، باكستان ، جمهورية الكونغو ، مالي، المغرب، الكاميرون ، الجزائر، الأردن، نيجيريا ، ماليزيا ، الهند، تايلند أي N=15 أما الحدود الزمنية فتكون خلال الفترة الممتدة بين الأردن، نيجيريا ، ماليزيا ، الهند، تايلند أي حجم العينة يقدر ب N=15 و المعيار الوحيد لاختيار الفترة الزمنية و كذا الدول هي مدى توفر البيانات التي تم الحصول عليها من قاعدة بيانات البنك العالمي (wdi) اما المعيار الاني التطابق النسبي الهيكلي لاقتصاديات الى حد ما فأغلبها دول تمتاز باقتصاد ربعي و احادية التصدير.

بالإضافة الى الانفاق الحكومي فقد تم دراج الاستثمار الاجنبي المباشر و المحلي من وجهة نظرنا لأنها هاذين المتغيرين يعتبران العامل المشترك الاكبر بين الدول المؤثرة على النمو الاقتصادي وعليه نموذج الدراسة سيكون على النحو التالى بعد ادخال اللوغاريتم:

$$lngdp = {}^{\beta}_{0} + {}^{\beta}_{1}lngov + {}^{\beta}_{2}lninv + {}^{\beta}_{3}lninvl + \varepsilon_{t}$$

Lngdp: إجمالي الناتج المحلى (بالأسعار الثابتة للدولار الأمريكي في عام 2010)

lngov: إجمالي الإنفاق الوطني (بالأسعار الثابتة للدولار الأمريكي في عام 2010)

lninv: الاستثمار الأجنبي المباشر، صافي التدفقات الوافدة (ميزان المدفوعات، بالأسعار الجارية للدولار الأمريكي)

lninvl: الاستثمار المحلي و تم التعبير عنه بإجمالي تكوين رأس المال (بالأسعار الثابتة للدولار الأمريكي في عام 2010)

ει : يمثل حد الخطأ العشوائي

نموذج (β_0 , β_1 , β_2 , β_3) معالم

5. تقدير نماذج وفق معطيات بانل

تم تقدير نماذج البيانات بانل الساكن الثلاثة وهي نموذج الانحدار التجميعي(PME) ونموذج التأثيرات الثابتة (FEM) ونموذج التأثيرات العشوائية (REM) والجدول التالي يبين نتائج التقدير بالاستعانة ببرنامجي stata15 و eviwes12 .

الجدول رقم (01): نتائج تقدير النموذج التجميعي(PRM) و التأثيرات الثابتة (FEM) و التأثيرات العشوائية (REM)

	نماذج التقدير								
نموذج التأثيرات العشوائية (REM)	نموذج التأثيرات الثابتة (FEM)	نموذج الانحدار التجميعي ((PME)	المتغيرات المفسرة						
1.08175	1.02844	0.8945	lngov						
0.001942	0.001784	0.00286	lninv						
-0.15231	-0.14541	0.1126	lninvl						
1.52219	2.7086	-0.11809	Constant						
0.9500	0.98871	0.9919	R ² (squared)						
1400.538	922.91	9163	F (statistic)						
0.0000	0.0000	0.0000	Prob- F						
225	225	225	Number of obs						

المصدر :من إعداد الباحث اعتمادا على مخرجات stata15 و eviwes12

ظهر معامل المتغيرة المعبرة عن الانفاق الحكومي بإشارة موجبة في نماذج الأثر التجميعي و الثابت و العشوائي كما دلت نتائج اختبار (F(statistic) في الجدول أن النماذج الثلاثة المقدرة مقبولة من الناحية الإحصائية عند مستوى دلالة 5% ، كما نلاحظ ان معامل ارتباط ($R^2(squared)$ ظهر بقيم جيدة في النماذج المقدرة مما يعني انها ذات قدرة تفسيرية عالية .

EISSN: 2716-8891

1.5. اختيار النموذج الملائم للدراسة:

1.1.5. اختبار فيشر المقيد:

يستعمل اختبار F المقيد للاختيار النموذج المناسب بين نموذجي الانحدار التجميعي ونموذج التأثيرات الثابتة ويتم حساب هده قيمة انطلاقا من نتائج معامل الارتباط الظاهرة للنموذجين في الجدول أعلاه و درجة حرية حيث بلغت القيمة الاحصائية ل F المقيد المحسوبة ب 6,8148 و هي أكبر من : قيمة الاحصائية F المجدولة E عند معنوية E و قد تم حساب E المقيد وفق الصيغة التالية

$$F(N-1, NT-N-K) = \frac{(0.9919 - 0.9887)/15 - 3}{(1 - 0.9919)/15 * 15 - 15 - 3} = 6,8148$$

على ضوء نتائج F المقيد نجد أن الطريقة الأفضل لتقدير نموذج بانل الساكن هي طريقة الآثار الثابتة بالمقارنة مع النموذج التجميعي .

: (Breuch and Pagan-LM) اختبار (2.1.5

يستعمل هدا الاختبار للاختيار بين نموذج الاثر العشوائي و نموذج التجميعي حيث:

 H_0 : نموذج الاثر العشوائي هو الانسب نقبل -

 H_1 : النموذج التجميعي هو الانسب نقبل –

p-value	Chi-bar	نوع الاختبار
0.0000	697.11	(Breuch and Pagan-LM)

المصدر :من إعداد الباحث اعتمادا على مخرجات stata15

بلغت Chi-bar قيمية 697.11 و احتمالية (p-value =0.000) مما يفيد قبول الفرضية البديلة و رفض فرضية H_0 أي أن نموذج الأثر العشوائي هو الأفضل. H_1

3.1.5 اختبار 3.1.5

بعدما قمنا باختبار F المقيد و اختبار (Breuch and Pagan-LM) قمنا بإجراء اختبار هوسمان للتفضيل بين نموذج التأثيرات الثابتة و نموذج التأثيرات العشوائية حيث ظهرت النتائج كالتالي:

p-value	Chi-Stat	نوع الاختبار
0.0000	28.45	Hausman test

المصدر :من إعداد الباحث اعتمادا على مخرجات stata15

بالاعتماد على نتائج الجدول أعلاه أظهر اختبار hausman ارتفاع القيمة الاحصائية له المقدرة ب28.45 مع وجود القيمة الاحتمالية p-value مساوية للصفر و هي أقل من 5% و بالتالي يتم رفض فرضية العدم و قبول الفرضية البديلة فيكون استخدام نموذج التأثيرات الثابتة هو الملائم .

2.5. الاختبارات التشخصية لنموذج التأثيرات الثابتة:

يقوم نماذج بانل الساكن على جملة من الفرضيات التي تضمن صلاحية استخدام النموذج في عملية التتبؤ و في اختبار فرضيات الدراسة، و تتمثل هذه الفرضيات أساسا في اختبار الارتباط المتعدد بين متغيرات و اختبار ثبات التباين و الارتباط الذاتي للأخطاء لذا قمنا بتطبيق هذه الاختبارات على نموذج التأثيرات الثابتة و فيما يلى النتائج:

1.2.5. اختبار الارتباط المتعدد بين متغيرات (Multicollinearity) :

	Vif	نوع الاختبار			
variable	vif	1/vif			
Ingov	20.34	0.04917			
Ininvl	20.12	0.04969			
Ininv	1.13	0.8865			
Mean vif	13.86				

المصدر :من إعداد الباحث اعتمادا على مخرجات stata15

من خلال نتائج اختبار vif يظهر لنا أن قيمة vif لكل المتغيرات تتجاوز قيمة 5 باستثناء متغيرة واحدة التي تمثل الاستثمار الاجنبي المباشر Ininv مما يعني أن النموذج يعاني من الارتباط المتعدد.

(heteroskedisticity) اختبار ثبات التباين (2.2.5

نوع الاختبار	قيمة الاختبار	p-value
Modified Wald test	4965.69	0.000

المصدر :من إعداد الباحث اعتمادا على مخرجات stata15

يظهر من خلال الشكل السابق أن القيمة الاحتمالية Modified Wald أقل من القيمة المعنوية 0,05 أي يتم رفض الفرضية العدم التي تقر بثبات التباين و نقبل الفرضية البديلة.

3.2.5. اختبار الارتباط الذاتي (autocorrelation)

يعتبر اختبار Wooldridge test من أهم الاختبارات التي تستعمل على مدى وجود ارتباط ذاتي لنموذج التأثيرات الثابت المقدر وبالاستعانة بالبرنامج الاحصائي stata15 كانت النتائج كالتالي:

نوع الاختبار	قيمة الاختبار	p-value
Wooldridge test	10.526	0.0059

المصدر: من إعداد الباحث اعتمادا على مخرجات stata15

يظهر من خلال اختبار Wooldridge test أن القيمة الاحتمالية أقل من القيمة المعنوية 0,05 ، أي يتم قبول فرضية العدم التي تقر بعدم وجود ارتباط ذاتي الخاص بنموذج التأثيرات الثابتة.

6. تقدير نموذج التأثيرات الثابتة وفق طريقة robust

بعد اجراء الاختبارات التشخيصية تبين لنا أن نموذج التأثيرات الثابتة يعاني من مشكل عدم ثبات التباين والارتباط المتعدد مما يستدعي تقدير نموذج التأثيرات الثابتة وفق اسلوب robust حيث هذه الطريقة تعطي نفس تقديرات نموذج الآثار الثابتة لكن تعدل في مجال الثقة و في المعنوية الاحصائية مع المحافظة على نفس معاملات المتغيرات و الجدول التالي يوضح نتائج التقدير:

الجدول رقم (02): نتائج تقدير نموذج التأثيرات الثابتة باستخدام طريقة robust

Lngdp	=1.0284 li	ngov + 0.001784	lninv - 0.14541	lnivl + 2.70863
t	(8.79)	(4.96)	(6.06)	(3.82)
Prob	(0.000)	(0.000)	(0.201)	(0.033)
Prob -F=	=0.000	F =129.81	R = 0.9894	N.obs=225

المصدر :من إعداد الباحث اعتمادا على مخرجات stata15

يظهر من خلال النتائج أعلاه أن النموذج يتمتع بالمعنوية الاحصائية ككل حيث قدرت القيمة الاحتمالية لاختبار فيشر ب prob-F=0.000 عند مستوى معنوية 5 % أي يوجد على الأقل معامل يختلف معنويا عن الصغر كما أن للنموذج قدرة تفسيرية جيدة حيث بلغ معامل التحديد 0.9894.

الطلاقا من القيم الاحتمالية للمعلمات الجزئية المبينة في الجدول أعلاه، نلاحظ وجود علاقة طردية ومعنوية عند مستوى 5 % بين الانفاق الحكومي و النمو الاقتصادي المعبر عنه بإجمالي الناتج المحلي حيث ارتفاع الانفاق الحكومي بوحدة واحدة مع ثبات العوامل الاخرى يؤدي إلى ارتفاع الناتج المحلي ب 1.02 % في الدول النامية محل الدراسة و هذا ما يتوافق النظرية الكينزية التي تشير ان الإنفاق الحكومي يمثل أحد عناصر الطلب الكلي الفعال والذي ينعكس إيجابا على الناتج المحلي الإجمالي عبر قدرته في خلق دخول فردية جديدة وبتالي ارتفاع في إنتاجية الأعوان الاقتصاديين و استهلاكهم ، وعليه فان نظرية الطلب الفعال و فكرة المضاعف التي جاء بها كينز أكدت الاثر الايجابي للإنفاق العام على النمو الاقتصادي لا سميا في مرحلة مبكرة من التنمية كون أنها تشكل أداة مهمة مناحة للحكومات الدول النامية للتحفيز النشاط الاقتصادي، كما يمكن تفسير العلاقة الطردية بما تشهده هذه البلدان من ارتفاع معدلات التحضر يؤدي ذلك الى ارتفاع الطلب على البنية التحتية الاجتماعية ومنه نمو التصنيع يؤدي الى ارتفاع معدلات النمو الاقتصادي .

-ظهرت معلمة الاستثمار الاجنبي المباشر معنوية وبعلاقة طردية مع متغيرة النمو الاقتصادي فعند ارتفاع الاستثمار الاجنبي بوحدة واحدة مع ثبات العوامل الاخرى يؤدي إلى ارتفاع الناتج المحلي الاجمالي ب 0.0017 % ، اما تفسير ذلك ينبع من أن تدفق الاستثمار الأجنبي المباشر يمثل أهم عناصر التمويل الخارجي للتتمية في الدول النامية وما يدعم ذلك التفسير النيوكلاسيكي الذي ابرز أن تأثير الاستثمار الأجنبي المباشر على النمو الاقتصادي ايجابي رغم محدوديته وهذا ما يؤكد ضعف المرونة التي قدرت ب0.0017 %

من خلال الجدول رقم (2) معامل متغير إجمالي تكوين رأس المال المعبر عن الاستثمار المحلي ظهر غير معنوي للدول محل الدراسة وذلك مرده أن هذا نوع من الاستثمار لم يوجه الى قطاعات الانتاجية بهذه الدول.

7. الخاتمة:

أدى تطور الدولة وانتقالها من الدولة الحارسة إلى الدولة المتدخلة ثم إلى المنتجة إلى اتساع وظائفها ،وأصبح الانفاق الحكومي أداة رئيسيه تستخدمها الدولة في إحداث أثر تعويضي لمعالجة التقلبات الاقتصادية و حاولنا من خلال هذه الدراسة قياس أثر الانفاق الحكومي على النمو الاقتصادي في عينة تتكون من 15 دولة نامية ما بين افريقية و اسيوية اعتمادا على بيانات سنوية للفترة (2005–2019) من خلال تقدير نموذج الاثار الثابتة وفق أسلوب robust و عموما يمكن القول أن الدراسة في شقيها النظري و التطبيقي مهدت لبعض النتائج جاءت كالتالي:

اختلفت الدراسات والأبحاث في تحليل العلاقة بين الإنفاق الحكومي والنمو الاقتصادي فالنظرية الكينزية ترى أن الإنفاق الحكومي يؤدي إلى زيادة النمو من خلال المضاعف الكينزي على عكس نظرية فاجنر؛ كما لمسنا اختلاف الدراسات الأكاديمية فكانت نتائجها متباينة من حيث الدلالة الإحصائية والاقتصادية حسب مختلف المناطق والدول المختارة وكذا المنهجية القياسية المتبعة.

-يؤثر الإنفاق الحكومي على نمو الناتج المحلي بتأثيره على مكونات الناتج، فالناتج المحلي يتحدد بالعوامل المادية للناتج، وهي تمثل المقدرة الإنتاجية أو ما يعرف بتكوين رأسمال الثابت مع العوامل الاقتصادية والتي تتناول الطلب الكلي الفعال حسب كينز لذلك فإن اثر الإنفاق العمومي على الناتج يتحدد من خلال هذين العاملين و ذلك بطريقة مباشرة من خلال كفاءة تحول الإنفاق الحكومي إلى رأس مال منتج أو بطريقة غير مباشرة من خلال التأثير على إنتاجية الأعوان الاقتصاديين و استهلاكهم.

- بينت نتائج الدراسة القياسية على وجود علاقة معنوية وطردية بين الإنفاق الحكومي و معدلات النمو الاقتصادي في الدول النامية وتم تفسير ذلك بالاستناد الى فكرة الطلب الفعال لكينز كما يمكن القول أن الإنفاق الجاري على التعليم و الصحة يسمح للأفراد بتأدية نشاطهم بكفاءة أكبر حيث كلما زاد هذا النوع من الإنفاق كلما ساهم في زيادة الإنتاج بشكل ملحوظ ، وفي نهاية هذه الدراسة خرجنا ببعض الاقتراحات جاءت كالتالى:

EISSN: 2716-8891

- وجب على صانعي القرار في الدول النامية توجبه الإنفاق الحكومي نحو المشروعات الإنتاجية، مع ترشيد الإنفاق الجاري والبحث على إيرادات جديدة بديلة للإيرادات البترولية التي تخضع لتقلبات أسعار النفط.

-التركيز على السياسات الخاصة بالإنفاق الحكومي المحفزة للنمو الاقتصادي مع تشجيع الاستثمار المحلي من خلال توفير البيئة المناسبة للمستثمرين المحليين على الاستثمار داخل البلد.

-الاستفادة من التجارب والخبرات الاجنبية لدول المتقدمة في مجال ادارة المال العام بما يحقق الاهداف الاقتصادية مع الحرص على تطوير الجهاز الإحصائي للحصول على معطيات قريبة من الواقع تستخدم في الدراسات القياسية لتسطير السياسات الاقتصادية الصحيحة والرشيدة.

8. قائمة المراجع:

خالد عبدالحميد حسانين عبدالحميد. (2018). دراسة تحليلية لقياس أثر النمو الاقتصادى على الإنفاق الاستثماري في مصر. مجلة بحوث الشرق الأوسط(44)، 259.

عمر محمود أبو عبيدة. (2015). أثر الإنفاق الحكومي على النمو الاقتصادي في الأراضي الفلسطينية: دراسة قياسية تطبيقية خلال الفترة-1995-2013. مجلة جامعة القدس المفتوحة للأبحاث والدراسات الإدارية والاقتصادية، 1 (5)، 156.

هشام عياد. (2019). دراسة قانون فاجنر في حالة الجزائر دراسة قياسية للفترة 1970-2018. مجلة الإقتصاد الجديد، 11(1)، 120.

هناء بن عزة. (جوان, 2017). أثر الانفاق الحكومي على النمو الاقتصادي في الجزائر دراسة قياسية للفترة 2010–2014. مجلة البحوث الاقتصادية و المالية، 1)4.

Chipaumira, Hlanganipaingirande, G., Mangena, & Yowukai Rusua. (2014). The Impact Of Government Spending On Economic Growth: Case OF South Africa (1990-2010). Mediterranean Journal of Social Science, 5(1).

Gumasekara, L. (2015). The Impact of Government Expenditure on Economic Growth: A Study of Asian Countries. International Journal of Social 'Behavioral 'Educational 'Economic 'Business and Industrial Engineering, 5(5).

9. الملاحق
 الملحق(1): نتائج تقدير النموذج التجميعي(PRM) و نموذج التأثيرات الثابتة(FEM) و التأثيرات العشوائية (REM)

. regress lngd	do Ingov Ininv	Inimul				
		111111111111111111111111111111111111111				
Source	SS	df	MS	Number	of obs =	225
				F(3, 22	21) =	9163.00
Model	474.833972	3	158.277991	Prob >	F =	0.0000
Residual	3.81746485	221	.017273597	R-squar	red =	0.9920
					squared =	0.9919
Total	478.651437	224	2.13683677	_		.13143
1ngdp	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
lngov	. 895 4115	.0275382	32.52	0.000	.8411404	. 9496825
lninv	.002865	.0029876	0.96			.0087529
lninvl	.1126116	.0262342	4.29	0.000		.1643128
_cons	1180922	.1621679	-0.73	0.467	4376856	. 2015012
. xtreg lngdp Fixed-effects Group variable				Number o	of obs = of groups =	225 15
R-sq:				Obs per		
within = between =					min =	15 15.0
overall:					avg = max =	15.0
000.011	0.30.3					
				F(3,207)		922.91
corr(u_i, Xb)	= 0.7716			Prob > F	=	0.0000
lngdp	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
lngov	1.028442	.0426882	24.09	0.000	. 9442822	1.112601
lninv	.001784	.0013232	1.35	0.179	0008246	.0043926
lninvl	1454107	.0321613	-4.52	0.000	2088163	082005
lninvl _cons	1454107 2.708636	.0321613 .4707687	-4.52 5.75	0.000	1.78052	
_cons sigma_u	2.708636			0.000		
_cons sigma_u sigma_e	2.708636 .24641023 .05455061	. 4707687	5.75	0.000	1.78052	
_cons sigma_u	2.708636	. 4707687		0.000	1.78052	
_cons sigma_u sigma_e rho	2.708636 .24641023 .05455061	.4707687	5.75 n of varia	0.000	1.78052 u_i)	3.636752
_cons sigma_u sigma_e rho F test that a	2.708636 .24641023 .05455061 .95328006	(fraction 4, 207) = 3	5.75 n of varia	0.000	1.78052 u_i)	
_cons sigma_u sigma_e rho f test that a xtreg lngdp	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 lngov lninv s GLS regress	.4707687 (fraction 4, 207) = 3	5.75 n of varia	0.000	1.78052 u_i) Prob > I	3.636752 F = 0.0000
cons sigma_u sigma_e rho f test that a xtreg lngdp andom-effects froup variable	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 lngov lninv s GLS regress	.4707687 (fraction 4, 207) = 3	5.75 n of varia	Number o	1.78052 Prob > 1 Of obs = of groups =	3.636752 F = 0.0000
sigma_u sigma_e rho F test that a xtreg lngdp tandom-effects froup variable	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 lngov lninv s GLS regress e: ID	.4707687 (fraction 4, 207) = 3	5.75 n of varia	0.000	1.78052 Prob > 1 Of obs = of groups = group:	3.636752 F = 0.0000 225
cons sigma_u sigma_e rho F test that a xtreg lngdp andom-effects froup variable x-sq: within =	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 lngov lninv s GLS regress e: ID = 0.9304	.4707687 (fraction 4, 207) = 3	5.75 n of varia	Number o	1.78052 Prob > 1 of obs = of groups = group: min =	3.636752 F = 0.0000 225 15
cons sigma_u sigma_e rho F test that a . xtreg lngdp Random-effects Group variable R-sq:	2.708636 .24641023 .05455061 .95328006 Il u_i=0: F(1 Ingov Ininv s GLS regress e: ID = 0.9304 = 0.9894	.4707687 (fraction 4, 207) = 3	5.75 n of varia	Number o	1.78052 Prob > 1 Of obs = of groups = group:	3.636752 F = 0.0000 225 15
cons sigma_u sigma_e rho F test that a . xtreg lngdp Random-effects Group variable R-sq: within = between = overall =	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 Ingov lninv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880	.4707687 (fraction 4, 207) = 3 lninvl, re ion	5.75 n of varia	Number of Number of Obs per	1.78052 Prob > 1 Of obs = of groups = min = avg = max = si2(3) = si2(3)	3.636752 F = 0.0000 225 15 15.0 15 4201.61
sigma_u sigma_e rho F test that a xtreg lngdp tandom-effects froup variable x-sq: within = between = overall =	2.708636 .24641023 .05455061 .95328006 Il u_i=0: F(1 Ingov Ininv s GLS regress e: ID = 0.9304 = 0.9894	.4707687 (fraction 4, 207) = 3 lninvl, re ion	5.75 n of varia	Number of Number of Obs per	1.78052 Prob > 1 Of obs = of groups = min = avg = max = si2(3) = si2(3)	3.636752 F = 0.0000 225 15 15.0 15 4201.61
cons sigma_u sigma_e rho f test that a xtreg lngdp andom-effects froup variable sq: within = between = overall =	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 Ingov lninv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880	.4707687 (fraction 4, 207) = 3 lninvl, re ion	5.75 n of variar 76.85	Number of Number of Obs per	1.78052 Prob > 1 Of obs = of groups = min = avg = max = siz(3) = siz(3)	3.636752 F = 0.0000 225 15 15.0 16 4201.61
cons sigma_u sigma_e rho F test that a xtreg lngdp tandom-effects froup variable t-sq: within = between = overall = corr(u_i, X) lngdp lngov	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 lngov lninv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880 = 0 (assume Coef. 1.081753	.4707687 (fraction 4, 207) = 3 lninvl, re ion d) Std. Err .0392975	5.75 n of varian 76.85 . Z	Number of Number of Number of Obs per Wald chir Prob > 0 P> z	1.78052 Prob > 1 Of obs = of groups = group: min = avg = max = i2(3) = chi2 = [95% Conf.	3.636752 F = 0.0000 225 15 15.0 15 4201.61 0.0000 Interval]
cons sigma_u sigma_e rho F test that a xtreg lngdp andom-effects froup variable t-sq: within = between = overall = corr(u_i, X) lngdp lngov lninv	2.708636 .24641023 .05455061 .95328006 Il u_i=0: F(1 Ingov Ininv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880 = 0 (assume Coef. 1.081753 .001942	.4707687 (fraction 4, 207) = 3 lninvl, re ion d) Std. Err .0392975	5.75 n of varian 76.85	Number of Number of Number of Obs per Wald chir Prob > of P> z 0.000 0.167	1.78052 Prob > 1 Of obs = of groups = min = avg = max = i2(3) = chi2 = [95% Conf. 1.0047310008139	3.636752 F = 0.0000 225 15 15.0 15 4201.61 0.0000 Interval] 1.158774 .004698
cons sigma_u sigma_e rho = test that a xtreg lngdp andom-effects roup variablesq: within = between = overall = corr(u_i, X) lngdp lngov lninvl	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 Ingov lninv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880 = 0 (assume Coef. 1.081753 .001942152312	.4707687 (fraction 4, 207) = 3 lninvl, re ion d) Std. Err .0392975 .0014061 .0317869	5.75 n of variar 76.85 z 27.53 1.38 -4.79	Number of Number	1.78052 Prob > 1 Prob > 1 Of obs = of groups = min = avg = max = i2(3) = ihi2 = [95% Conf. 1.0047310081392146132	3.636752 F = 0.0000 225 15 15.0 15 4201.61 0.0000 Interval] 1.158774 .0046980900108
cons sigma_u sigma_e rho F test that a xtreg lngdp tandom-effects froup variable t-sq: within = between = overall = corr(u_i, X) lngdp lngov lninv	2.708636 .24641023 .05455061 .95328006 Il u_i=0: F(1 Ingov Ininv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880 = 0 (assume Coef. 1.081753 .001942	.4707687 (fraction 4, 207) = 3 lninvl, re ion d) Std. Err .0392975	5.75 n of varian 76.85	Number of Number of Number of Obs per Wald chir Prob > of P> z 0.000 0.167	1.78052 Prob > 1 Of obs = of groups = min = avg = max = i2(3) = chi2 = [95% Conf. 1.0047310008139	3.636752 F = 0.0000 225 15 15.0 15 4201.61 0.0000 Interval] 1.158774 .0046980900108
cons sigma_u sigma_e rho F test that a . xtreg lngdp Random-effects Group variable R-sq: within = between = overall = torr(u_i, X) lngdp lngov lninv lninv lnivnlcons sigma_u	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 Ingov lninv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880 = 0 (assume Coef. 1.081753 .001942152312 1.522197 .12336808	.4707687 (fraction 4, 207) = 3 lninvl, re ion d) Std. Err .0392975 .0014061 .0317869	5.75 n of variar 76.85 z 27.53 1.38 -4.79	Number of Number	1.78052 Prob > 1 Prob > 1 Of obs = of groups = min = avg = max = i2(3) = ihi2 = [95% Conf. 1.0047310081392146132	3.636752 F = 0.0000 225 15 15.0 15 4201.61 0.0000 Interval] 1.158774 .0046980900108
cons sigma_u sigma_e rho F test that a: xtreg lngdp tandom-effects froup variable t-sq: between = overall = corr(u_i, X) lngdp lngov lninv lninvlcons	2.708636 .24641023 .05455061 .95328006 11 u_i=0: F(1 Ingov lninv s GLS regress e: ID = 0.9304 = 0.9894 = 0.9880 = 0 (assume Coef. 1.081753 .001942152312 1.522197	.4707687 (fraction 4, 207) = 3 lninvl, re ion d) Std. Err .0392975 .0014061 .0317869 .3944583	5.75 n of variar 76.85 z 27.53 1.38 -4.79	Number of Number of Number of Obs per Wald chir Prob > of O.000 O.167 O.000 O.000	1.78052 Prob > 1 Prob > 1 of obs = of groups =	3.636752 F = 0.0000 225 15 15.0 15 4201.61 0.0000

الملحق(2): نتائج اختبار (Breuch and Pagan-LM)

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects

lngdp[ID,t] = Xb + u[ID] + e[ID,t]

EISSN: 2716-8891

الملحق(3): نتائج اختبار Hausman

	Coeffi	cients ——					
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))			
	fixed	random	Difference	S.E.			
lngov lninv	1.028442	1.081753	053311	.0227774			
lninvl	.001784	.001942	000158	.00007			
	1454107	152312	.0069013	.0126741			

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

 $chi2(3) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$ = 28.45 Prob>chi2 = 0.0000

الملحق(4): نتائج اختبار الارتباط المتعدد بين متغيرات (Multicollinearity)

. vif							
Variable	VIF	1/VIF					
Ingov	20.34	0.049176					
lninvl	20.12	0.049690					
lninv	1.13	0.886599					
Mean VIF	13.86						

الملحق(5): نتائج اختبار ثبات التباين (heteroskedisticity)

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

HO: sigma(i)^2 = sigma^2 for all i

chi2 (15) = 4965.69

Prob>chi2 = 0.0000

الملحق(6): نتائج اختبار الارتباط الذاتي (autocorrelation)

Wooldridge test for autocorrelation in panel data HO: no first-order autocorrelation F(1, 14) = 10.526Frob > F = 0.0059

الملحق(6): تقدير نموذج التأثيرات الثابتة باستخدام طريقة robust

xtreg lngdp						
ixed-effects	(within) regr	ession		Number o	of obs =	225
Group variable	: ID			Number o	of groups =	15
t-sq:				Obs per	group:	
within =	0.9304			_	min =	15
between =	0.9894				avg =	15.0
overall =	0.9879				max =	15
				F(3,14)	=	129.81
orr(u_i, Xb)	= 0.77 1 6			Prob > F	=	0.0000
orr(u_i, Xb)	= 0.7716	(s	td. Err.		= for 15 clust	
orr(u_i, Xb) lngdp	= 0.7716	(S Robust Std. Err.	td. Err.		for 15 clust	ers in ID)
		Robust		adjusted	for 15 clust	ers in ID)
lngdp	Coef.	Robust Std. Err.	t	adjusted P> t	for 15 clust	ers in ID) Interval]
lngdp lngov	Coef.	Robust Std. Err.	t 8.79	adjusted P> t 0.000	for 15 clust [95% Conf.	ers in ID) Interval] 1.279271 .0025549
lngdp lngov lninv	Coef. 1.028442 .001784	Robust Std. Err. .1169486 .0003595	t 8.79 4.96	adjusted P> t 0.000 0.000	[95% Conf. .7776119	ers in ID) Interval] 1.279271 .0025549 .0868546
Ingov Ininv Ininvl	Coef. 1.028442 .001784 1454107	Robust Std. Err. .1169486 .0003595 .1082929	8.79 4.96 -1.34	P> t 0.000 0.000 0.201	[95% Conf. .7776119 .001013 3776759	ers in ID) Interval] 1.279271 .0025549 .0868546
lngdp lngov lninv lninvl _cons	Coef. 1.028442 .001784 1454107 2.708636	Robust Std. Err. .1169486 .0003595 .1082929	8.79 4.96 -1.34	P> t 0.000 0.000 0.201	[95% Conf. .7776119 .001013 3776759	0.0000 ers in ID) Interval] 1.279271 .0025549 .0868546 5.16813

الملحق (7): بيانات المتغيرات الحقيقة لكل الدول وسنوات الدراسة الوحدة الدولار -

	ىلد	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	SEN		1.6054E+10	1.7064E+10	1.7438E+10	1.7687E+10					L	l	2.5419E+10		2.9718E+10	3,0774E+10
	UGA					2,7861E+10									4,379E+10	
	PAK	1,6207E+11	1,7442E+11	1,8052E+11	1,8642E+11	1,8654E+11	1,8751E+11	1,9208E+11	2,0154E+11	2,0763E+11	2,1754E+11	2,2832E+11	2,4576E+11	2,6625E+11	2,8519E+11	2,8677E+11
	COG	6118683124	6598808740	9039212754	8748193074	8885815931	1,144E+10	9826271700	1,1594E+10	1,2173E+10	1,3511E+10	1,4924E+10	1,2983E+10	9307280771	8350680233	8204171411
	MLI	8359398983	8772693471	9368775157	1,0221E+10	1,0724E+10	1,2005E+10	1,2432E+10	1,2006E+10	1,3039E+10	1,4081E+10	1,5145E+10	1,6435E+10	1,6102E+10	1,6155E+10	1,6998E+10
	MAR	7,7339E+10	8,2351E+10	8,8264E+10	9,8595E+10	1,0153E+11	1,0327E+11	1,1011E+11	1,1603E+11	1,183E+11	1,1984E+11	1,221E+11	1,2796E+11	1,3235E+11	1,3771E+11	1,4031E+11
	CMR	2,2298E+10	2,2951E+10	2,4042E+10	2,5863E+10	2,6501E+10	2,742E+10	2,8937E+10	3,0097E+10	3,1974E+10	3,4126E+10	3,5443E+10	3,6887E+10	3,8187E+10	4,0237E+10	4,2322E+10
gov	DZA	9,7721E+10	1,0211E+11	1,1241E+11	1,2429E+11	1,4103E+11	1,4984E+11	1,5402E+11	1,6968E+11	1,7935E+11	1,8562E+11	1,9135E+11	1,9537E+11	2,0166E+11	2,0644E+11	2,1052E+11
	JOR	2,6767E+10	2,7603E+10	3,0491E+10	3,4295E+10	3,468E+10	3,2004E+10	3,2652E+10	3,4439E+10	3,5786E+10	3,5682E+10	3,715E+10	3,66E+10	3,8848E+10	3,924E+10	3,9852E+10
	NGA													3,5821E+11		
	MYS													3,3721E+11		
	IND						*						•	•	•	2,9768E+12
	THA													3,7851E+11		
	VNM PHL													1,8925E+11		
	SEN													3,4098E+11		
	UGA															2,5821E+10 4,2611E+10
	PAK															2,5673E+11
	COG															1,1655E+10
	MLI		•	•	•	•		'	'		•	•	•		•	1,5562E+10
	MAR					,		'		•	•	•	•		•	1,2627E+11
	CMR															3,9288E+10
gdp	DZA	1,4218E+11	1,446E+11	1,4952E+11	1,5311E+11	1,5556E+11	1,6116E+11	1,6583E+11	1,7147E+11	1,7627E+11	1,8297E+11	1,8974E+11	1,9581E+11	1,9835E+11	2,0073E+11	2,0234E+11
0	JOR	2,0139E+10	2,1768E+10	2,3548E+10	2,5251E+10	2,652E+10	2,7134E+10	2,7877E+10	2,8554E+10	2,9299E+10	3,029E+10	3,1047E+10	3,1666E+10	3,2327E+10	3,2952E+10	3,3596E+10
	NGA	2,5665E+11	2,722E+11	2,9014E+11	3,0977E+11	3,3466E+11	3,6146E+11	3,8064E+11	3,9674E+11	4,2321E+11	4,4992E+11	4,6185E+11	4,5438E+11	4,5804E+11	4,6685E+11	4,7716E+11
	MYS	2,0486E+11	2,163E+11	2,2993E+11	2,4104E+11	2,3739E+11	2,5502E+11	2,6852E+11	2,8321E+11	2,9651E+11	3,1432E+11	3,3032E+11	3,4502E+11	3,6508E+11	3,8249E+11	3,9895E+11
	IND	1,1939E+12	1,2901E+12	1,3889E+12	1,4318E+12	1,5444E+12	1,6756E+12	1,7634E+12	1,8597E+12	1,9784E+12	2,125E+12	2,2949E+12	2,4844E+12	2,6594E+12	2,8222E+12	2,9402E+12
	THA	2,8377E+11	2,9786E+11	3,1405E+11	3,1947E+11	3,1727E+11	3,411E+11	3,4397E+11	3,6888E+11	3,788E+11	3,8253E+11	3,9451E+11	4,0804E+11	4,2464E+11	4,4226E+11	4,5267E+11
	VNM													1,7528E+11		
	PHL													3,2001E+11		
	SEN													588292998		
	UGA															1266026788
	PAK													2496000000		
	COG													4416953734		
	MLI													559362392		
	MAR CMR													2680109856		
														814458941		
inv	DZA Jor													1230243451		
	NGA													2029718310		
	MYS															3299085483
	IND						•	•		•	•		,			9101052111
	THA															5,0611E+10 4816635832
	VNM															
	PHL															1,612E+10 7685339334
	SEN															9143838083
	UGA															1,1716E+10
	PAK															3,74E+10
	COG															2581162954
	MLI															2930517428
	MAR	2,2012E+10	2,3839E+10	2,7029E+10	3,3212E+10	3,2326E+10	3,1763E+10	3,503E+10	3,4703E+10	3,6438E+10	3,5638E+10	3,5947E+10	3,9083E+10	4,0698E+10	4,3088E+10	4,3304E+10
	CMR															1,0844E+10
invl	DZA	3,5418E+10	3,7114E+10	4,4847E+10	5,081E+10	6,2417E+10	6,6767E+10	6,4785E+10	7,6726E+10	8,324E+10	8,6433E+10	8,8586E+10	8,9941E+10	9,3907E+10	9,5782E+10	9,7641E+10
	JOR	6605270703	5974558502	6866206921	8005253925	8015636641	7828873239	6966257920	6696691198	6075452651	6081386814	6298859764	5873926509	6251380246	6276234513	6551972330
	NGA	1,7764E+10	2,8298E+10	4,01E+10	3,9811E+10	5,3644E+10	6,3479E+10	5,8455E+10	6,0419E+10	6,5142E+10	7,3601E+10	7,2472E+10	6,9088E+10	6,7824E+10	7,4189E+10	8,1323E+10
	MYS	4,3601E+10	4,734E+10	5,233E+10	5,3308E+10	4,8143E+10	5,964E+10	6,2336E+10	7,373E+10	7,731E+10	7,928E+10	8,4623E+10	8,8372E+10	9,3926E+10	9,2353E+10	8,8733E+10
	IND	3,9686E+11	4,4995E+11	5,3161E+11	5,0384E+11	5,9076E+11	6,7394E+11	7,0049E+11	7,3057E+11	7,0349E+11	7,5762E+11	7,9345E+11	8,226E+11	9,0523E+11	9,9139E+11	9,7136E+11
	THA	8,4939E+10	7,9711E+10	8,0774E+10	8,8209E+10	6,6047E+10	8,6493E+10	8,8885E+10	9,9122E+10	1,0186E+11	8,9671E+10	9,1719E+10	8,5118E+10	9,8078E+10	1,1529E+11	1,1103E+11
	VNM															6,9519E+10
	PHL	2,8199E+10	2,529E+10	2,7398E+10	3,4733E+10	3,2649E+10	4,2594E+10	4,1513E+10	4,3766E+10	5,1837E+10	5,6128E+10	6,3654E+10	7,6887E+10	8,5267E+10	9,4887E+10	9,727E+10

الملحق(8): بيانات متغيرات الدراسة بعد ادخال اللوغاريتم لكل الدول و السنوات .

			•	J 05	· /		•	•	J #	** (°)
ID	T	Ininv	lngdp	Ingov	lninvl	ID	Ininv	lngdp	Ingov	lninvl
SEN	2005 2006	18,93914 19,48484	23,34218 23,3665	23,46663 23,49924	21,88785 21,86655	JOR JOR	21,40863 21,98852	23,72591 23,80373	24,01043 24,04118	22,61113 22,51078
SEN	2007	19,6776	23,4147	23,56024	21,87825	JOR	21,68726	23,88232	24,1407	22,64988
SEN	2008 2009	19,93743 19,61906	23,45447	23,58192 23,59608	21,83173	JOR	21,76239	23,95215 24,00116	24,25826	22,80336 22,80466
SEN SEN	2010	19,42165	23,47517 23,51018	23,62589	21,7894 21,85399	JOR JOR	21,60418 21,24704	24,02405	24,26942 24,18912	22,78108
SEN	2011	19,64051	23,52466	23,64948	21,91342	JOR	21,11939	24,05105	24,20917	22,66434
SEN	2012 2013	19,43649 19,55648	23,57457 23,6024	23,69672 23,74843	22,01656 22,17549	JOR JOR	21,16052 21,38935	24,07505 24,10082	24,26246 24,30081	22,62488 22,52752
SEN	2014	19,81469	23,66644	23,8301	22,38116	JOR	21,50188	24,1341	24,29791	22,5285
SEN	2015 2016	19,82963 19,97336	23,72816 23,78979	23,89123 23,95878	22,49198 22,61123	JOR JOR	21,19345 21,16343	24,15876 24,1785	24,33824 24,32331	22,56363 22,49379
SEN	2017	20,19274	23,86125	24,05857	22,84931	JOR	21,43116	24,19916	24,38292	22,55607
SEN	2018 2019	20,5582 20,70646	23,92309 23,97446	24,11503 24,14993	22,90059 22,93635	JOR JOR	20,67715 20,53149	24,21832 24,23768	24,39295 24,40843	22,56004 22,60303
UGA	2005	19,75518	23,61529	23,6934	22,16007	NGA	22,3292	26,27098	26,15553	23,60045
UGA UGA	2006 2007	20,28362 20,49046	23,71771 23,79848	23,81635 23,90776	22,34529 22,49346	NGA NGA	22,30314 22,52101	26,32981 26,39364	26,09702 26,42904	24,06607 24,41464
UGA	2008	20,40699	23,88198	23,92854	22,55186	NGA	22,82668	26,45909	26,30094	24,40741
UGA UGA	2009 2010	20,55078 20,11423	23,94779 24,00263	24,0505 24,11079	22,57615 22,66705	NGA NGA	22,8699 22,51939	26,53639 26,61341	26,48965 26,54694	24,70563 24,87398
UGA	2011	20,61154	24,0924	24,20356	22,75105	NGA	22,90267	26,66513	26,51393	24,79152
UGA UGA	2012 2013	20,91007 20,81493	24,13005 24,16529	24,2377 24,26855	22,78176 22,90424	NGA NGA	22,67911 22,43938	26,70656 26,77114	26,51794 26,66207	24,82457 24,89983
UGA	2014	20,78018	24,21509	24,28502	22,88275	NGA	22,26951	26,83233	26,6833	25,02193
UGA UGA	2015 2016	20,41898 20,25439	24,26567 24,31237	24,36498 24,38956	22,87302 22,95559	NGA NGA	21,84304 22,21589	26,85851 26,84221	26,68274 26,61964	25,00646 24,95865
UGA	2017	20,5035	24,34976	24,41214	23,00608	NGA	21,97689	26,85023	26,60437	24,94019
UGA UGA	2018 2019	20,77714 20,95915	24,40956 24,47538	24,50266 24,57342	23,09528 23,18422	NGA NGA	21,41515 21,91691	26,86928 26,89112	26,67649 26,68696	25,02989 25,12169
PAK	2005	21,51218	25,73511	25,81131	23,96525	MYS	22,09058	26,04561	25,78165	24,49833
PAK PAK	2006 2007	22,17558 22,44425	25,79242 25,83962	25,88473 25,91911	24,09904 24,12468	MYS MYS	22,76328 22,92839	26,09995 26,16104	25,8492 25,94554	24,58062 24,68084
PAK	2008	22,41668	25,85649	25,95125	24,16717	MYS	22,74779	26,20822	26,00858	24,69934
PAK PAK	2009 2010	21,57256 21,42735	25,88441 25,90035	25,95189 25,95708	24,12305 24,05548	MYS MYS	18,55752 23,11073	26,19297 26,26459	25,99296 26,09124	24,59744 24,81159
PAK	2011	21,42735	25,92746	25,98119	23,98614	MYS	23,43925	26,31618	26,09124 26,16174	24,8558
PAK PAK	2012 2013	20,57128 21,0107	25,96193 26,00496	26,02924 26,05901	24,01123 24,03863	MYS MYS	22,90884 23,14774	26,36947 26,41534	26,26225 26,32368	25,02368 25,07108
PAK	2014	21,35825	26,05065	26,10563	24,06582	MYS	23,08595	26,47367	26,37548	25,09626
PAK	2015 2016	21,23788 21,6695	26,09687 26,15067	26,15401 26,22761	24,20166 24,27186	MYS	23,01146 23,32374	26,52333 26,56687	26,43371 26,48039	25,16147 25,20482
PAK PAK	2017	21,63796	26,20472	26,3077	24,36569	MYS MYS	22,96062	26,62337	26,54398	25,26577
PAK PAK	2018 2019	21,27543	26,26145 26,27129	26,37641 26,38193	24,46745 24,34493	MYS MYS	22,84006 22,93166	26,66997 26,71209	26,58919 26,62713	25,24888 25,2089
COG	2005	20,50137	23,02524	22,53461	21,46945	IND	22,70694	27,80822	27,82496	26,70686
COG	2006	21,12049	23,10207	22,61015	21,54241	IND	23,72045	27,88575	27,89828	26,83239
COG	2007 2008	21,07559 21,38602	23,03364 23,0948	22,92484 22,89211	22,13649 22,03336	IND	23,95121 24,49387	27,95956 27,98996	28,0047 28,0202	26,99917 26,94552
COG	2009 2010	20,8924	23,20488	22,90772 23,1604	22,07268 22,54858	IND	24,29509 24,0337	28,06564	28,11669	27,10468 27,2364
cog	2010	21,14247 19,51357	23,29957 23,32138	23,00833	22,07659	IND	24,32054	28,1472 28,19829	28,20502 28,26337	27,2364
COG	2012	18,05329	23,41621	23,17378	22,39677 22,48736	IND	23,90114	28,25141	28,30768	27,31709 27,27932
COG	2013 2014	21,35365 21,78357	23,40906 23,46691	23,32678	22,48736	IND	24,06092 24,26644	28,31332 28,3848	28,3328 28,40012	27,35344
cog	2015	22,17678	23,43402	23,42626	22,80852	IND	24,50767	28,46173	28,46553	27,39965
COG	2016 2017	17,73895 22,20872	23,32655 23,27911	23,28687 22,95406	22,59656 22,00654	IND	24,51782 24,4113	28,54106 28,60913	28,52749 28,60875	27,43574 27,53145
COG	2018	22,18542	23,21506	22,84561	21,67222	IND	24,46373	28,66853	28,6881	27,62238
COG	2019 2005	21,93702 18,89205	23,17897 22,86724	22,82791 22,84665	21,67151 21,1232	THA	24,64743 22,82931	28,70948 26,37142	28,72188 26,3684	27,60197 25,1652
MLI	2006	18,81404	22,91281	22,89491	21,22549	THA	22,91128	26,4199	26,36881	25,10168
MLI	2007 2008	19,1437 19,40063	22,94715 22,99378	22,96065 23,0477	21,32388 21,45204	THA	22,87896 22,87055	26,47283 26,48994	26,39081 26,43876	25,11492 25,20298
MLI	2009	20,28725	23,04072	23,09573	21,48932	THA	22,58135	26,48301	26,37346	24,91363
MLI	2010	19,73325 20,13654	23,0925 23,12412	23,2086 23,24354	21,66645 21,69216	THA	23,41428 21,62898	26,55546 26,56382	26,48646 26,51015	25,18333 25,21061
MLI	2012	19,80162 19,54513	23,11572 23,13841	23,20867 23,2912	21,58234	THA	23,28042 23,49184	26,63375	26,59124	25,31962 25,34687
MLI MLI	2013 2014	18,78548	23,13841	23,36808	21,69597 21,76321	THA	23,49184	26,66027 26,67006	26,6067 26,57995	25,34687
MLI	2015	19,43379	23,26675	23,44095	21,86935	THA	22,91241	26,70092	26,6047	25,242
MLI MLI	2016 2017	19,6911 20,14231	23,32362 23,37532	23,5227 23,50222	22,03797 21,79773	THA	21,97207 22,83773	26,73464 26,7745	26,60648 26,6595	25,1673 25,30903
MLI	2018	19,96198	23,42169	23,50548	21,68112	THA	23,30245	26,81517	26,73268	25,4707
MAR	2019 2005	20,01769 21,23645	23,46811 25,01392	23,55637 25,07146	21,79844 23,81484	THA VNM	22,29534 21,39314	26,83844 25,17005	26,74925 25,14553	25,43303 23,8947
MAR	2006	21,62375	25,08693	25,13426	23,89461	VNM	21,59873	25,2375	25,22961	24,00654
MAR MAR	2007 2008	21,76206 21,62598	25,12164 25,17918	25,2036 25,31429	24,02017 24,22618	VNM	22,62537 22,98284	25,30637 25,36144	25,36712 25,43673	24,24397 24,30486
MAR	2009	21,40146	25,22075	25,34365	24,19913	VNM	22,75141	25,41401	25,46815	24,34708
MAR MAR	2010	20,93888 21,64807	25,25819 25,30932	25,36058 25,42475	24,18157 24,27946	VNM	22,80271 22,72879	25,47627 25,5368	25,55553 25,56209	24,44607 24,37524
MAR	2012	21,76776	25,33898	25,4771	24,2701	VNM	22,84768	25,58794	25,60372	24,3987
MAR MAR	2013 2014	21,93548 21,98326	25,38333 25,40968	25,49645 25,50943	24,31889 24,29668	VNM	22,90932 22,94247	25,64074 25,69886	25,65619 25,72392	24,45177 24,53703
MAR	2015	21,90282	25,45404	25,52812	24,3053	VNM	23,19137	25,76352	25,81097	24,62358
MAR MAR	2016 2017	21,4903 21,70912	25,46458 25,5062	25,57495 25,60871	24,38896 24,42945	VNM	23,25696 23,36944	25,82377 25,88967	25,88839 25,96636	24,71625 24,80974
MAR	2018	21,98863	25,5372	25,64841	24,48652	VNM	23,46411	25,95804	26,03871	24,88873
MAR CMR	2019 2005	21,19312 19,31104	25,56171 23,81631	25,66712 23,82777	24,49151 22,26723	VNM PHL	23,50333 21,23249	26,02586 25,81993	26,11049 25,82321	24,96486 24,06257
CMR	2006	17,89512	23,8503 23,89816	23,85663 23,90308	22,27386 22,29158	PHL	21,71926 21,79441	25,87173	25,84724	23,95369 24,03375
CMR CMR	2007 2008	19,06033 16,85982	23,89816 23,93245	23,97609	22,29158 22,47719	PHL	21,01596	25,93489 25,97742	25,90148 25,96958	24,03375 24,27095
CMR	2009	20,43061	23,9542	24,00044	22,50035	PHL	21,44821	25,9918	25,98739	24,20909
CMR CMR	2010	20,10014 20,2975	23,98785 24,02832	24,03454 24,08839	22,52708 22,64155	PHL	20,79129 21,41998	26,06258 26,10043	26,06612 26,10083	24,47499 24,44927
CMR	2012	20,0834	24,07275	24,12769	22,66843	PHL	21,89122	26,16713	26,17229	24,50211
CMR	2013 2014	20,1207 20,40286	24,12538 24,18255	24,18818 24,25333	22,73433 22,84787	PHL	22,04165 22,47065	26,23245 26,294	26,25018 26,30913	24,67137 24,7509
CMR	2015	20,35847	24,23753	24,29119	22,84501	PHL	22,453	26,35555	26,38665	24,87672
CMR CMR	2016 2017	20,31363 20,51803	24,28297 24,31784	24,33113 24,36577	22,90833 22,94979	PHL	22,83705 23,05117	26,4246 26,49162	26,48549 26,55509	25,0656 25,16905
CMR	2018	20,45551	24,35766	24,41805	23,02501	PHL	23,0207	26,5531	26,63123	25,27595
CMR DZA	2019 2005	20,74774 20,86823	24,3942 25,68039	24,46858 25,30538	23,10688 24,29047	PHL	22,76258	26,61175	26,68378	25,30076
DZA	2006	21,33357	25,69724	25,34931	24,33726					
DZA DZA	2007 2008	21,24606 21,69352	25,73068 25,75439	25,4454 25,5459	24,52652 24,65135					
DZA	2009	21,73375	25,77027	25,67227	24,85711					
DZA	2010	21,55634	25,80563 25,83422	25,73282 25,76036	24,92448 24,89433					
DZA DZA	2011 2012	21,66765 21,129	25,83422 25,86766	25,76036 25,85718	24,89433 25,06351					
DZA	2013	21,24911	25,89527	25,91263	25,14499					
DZA DZA	2014 2015	21,1302 -20,103	25,93257 25,9689	25,94698 25,97736	25,18264 25,20724					
DZA	2015	21,2169	26,0004	25,99718	25,22242					
DZA	2017	20,93048	26,01331	26,02984	25,26557					
DZA DZA	2018 2019	21,10587 21,04627	26,02524 26,03321	26,05329 26,07283	25,28534 25,30456					
	2019									