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Abstract. This present study consists to analyze the mechanical buckling and the free 
vibration stabilities of antisymmetric cross-ply and angle-ply laminated composite plates 
using a refined high order shear deformation theory of four variables against five in other 
high order theories. Among the advantages of this new theory it takes into consideration the 
shearing effect in the calculation of deformation without the need for shear correction 
factors and giving rise to a variation of the shear stresses along the thickness and satisfying 
the zero shear stresses condition in faces of the plate. The laminate resting on the Pasternak 
elastic foundation, including a shear layer and Winkler spring, are considered. The equations 
of the motion are derived from Hamilton’s principal. The closed form solution of simply 
supported rectangular plates has been obtained by using the Navier method. In addition, the 
effects of various parameters of the laminated composite plate on static buckling and 
dynamic are presented.   
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1. Introduction 

The ability to control the selection of the proper composite materials, the number of plies, and 
the fiber orientation give the laminated composite plates much attention in industry 
applications and fields of technology. This promising feature allows designers to acquire desired 
structural responses under a given set of operating conditions. Many shear deformation theories 
accounting for transverse shear effects have been developed to overcome the deficiencies of the 
classical plate theory (CPT). The first-order shear deformation theories (FSDT) based on 
Reissner (1945) and Mindlin (1951) account for the transverse shear effects by the way of linear 
variation through the thickness. In references (Srinivas and Rao, 1970; Bert, 1974) a shear 
correction factors are required to rectify the equilibrium conditions and satisfying the zero 
shear stresses condition at the top and bottom faces of the plate.  In order to overcome the 
limitations of the first-order shear deformation theories (FSDT), higher-order shear deformation 
theories (HSDT) were developed, among them the Reddy’s theory is the most widely used due to 
its high efficiency and simplicity (Reddy and Phan, 1985; Mallikarjuna and Kant, 1993).  Shimpi 
(2002) for isotropic plates developed a refined plate theory using only two unknown, then it was 
extended by Shimpi and Patel (2006a-b) for orthotropic plates. 

In the present study, an attempt is made to check the efficiency of four variable refined shear 
deformation theories for the buckling and free vibration analysis of cross-ply laminated 
composite plates resting on elastic foundation. The theory satisfies zero shear stress conditions 
at top and bottom surfaces of the plates and does not need shear correction factor. The elastic 
foundation is modeled as two parameter Pasternak foundation. Governing equations and 
boundary conditions are obtained using the Hamilton principle. A closed form solution is 
obtained by using a double trigonometric series technique developed by Navier. 
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2. Theoretical formulation  

2.1. Main Assumptions 

Consider a rectangular plate of total thickness h composed of n orthotropic layers with the 
coordinate system as shown in Figure 1. The principal assumption of the refined plates theory is 
that the transverse displacement w includes two components of bending wb and shear ws. These 
components are functions of coordinates (x, y) and time t only.  

 

Fig 1. Geometry and coordinate system of laminated plate on elastic foundation. 

 2.2. Kinematics 

The displacement field can be obtained as 
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where 0
u and 0

v  denote the in-plane displacements in the directions of x  and y , respectively; b
w

and s
w are the bending and shear components of the transverse displacement, respectively; 

( )f z  represents shape function determining the distribution of the transverse shear strains and 

stresses along the thickness and is used as 

1
1 2
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p
pf z z

p h
,  3,5,...p  

2.3. Constitutive relations  

Since the laminate is made of several orthotropic layers with their material axes oriented 
arbitrarily with respect to the laminate coordinates, the constitutive equations of each layer 
must be transformed to the laminate coordinates (x, y, z). The stress-strain relations in the 
laminate coordinates of the kth layer are given as  

(1) 

(2) 
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Where 
k

;    and  
 

k

ij
Q  are the stress vector, strain vector and transformed stiffness matrix, 

respectively. With the non-zero strains components associated with the displacement field in 
Equation (1) can be defined as follows 
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2.4. Governing Equation 

The application of Hamilton principle leads to 
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Where 0

x
N ; 0

y
N ; 0

xy
N are in-plane applied loads.   is the composite density. wK and sK are the 

Winkler and shear layer spring constants, In this study, the laminated rectangular plate is taken 
to be simply supported at the edges. The solution of Equations (6) can be obtained analytically 
by using the following boundary conditions:  
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The following approximate solution that satisfies the boundary conditions is applied as 

 

Cross-ply laminated plate: 

at y=0,b 

Angle -ply laminated plate: 

at x=0,a 

(3) 

(4) 

(6) 

(7) 

(5) 
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In which
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W  and 
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W are arbitrary parameters to be determined.  is the Eigen 

frequency associated with ( m , n ) the Eigen mode, and /  m a  and /  n b . The analytical 

solutions can be obtained from the following equations for buckling and free vibration problem 
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Cross-ply laminated plate: Angle -ply laminated plate: 
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3. Results and discussion  

The lamina properties used in this study are given in Table 1. The following non-
dimensionalizations are used in presenting the numerical results in tabular and graphical form: 
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Table 1. Lamina properties. 
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3.1. Free vibration analysis 

In order to verify the accuracy of the present analysis, some numerical examples were solved. As 
a first example, the fundamental natural frequencies of a simply supported anti-symmetric 
cross-ply (0/90)n plates were calculated by varying the number of plies n and the orthotropic 
ratio E1/E2. Figure 2 shows the comparison between the present results and the solutions given 
by Reddy (1989) for different values of orthotropic ratio. The results clearly indicate that the 
fundamental natural frequencies predicted by the present model and Reddy (1989) are almost 
identical. 
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Fig 2. Comparison of the Fundamental Frequency   of simply supported anti-symmetric  

cross-ply square laminates  (a/h=10, Kw=Ks=0). 

In order to validate the present model in the case of elastic foundation, the results for the 
fundamental natural frequency parameter of isotropic plate with different values of thickness-
to-length ratios and different values of elastic coefficients are compared in Table 2 with those 
obtained by Baferani et al. (2011) and Thai and Choi (2011). Excellent agreement of the three 
methods can be seen.  

(10) 
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Table 2. Comparison of the Fundamental Frequency
2/h E   of Isotropic Square Plates. 

Kw Ks sources 
h/a 

0.05 0.1 0.15 0.2 

0 0 Ref. [10]  0.0291 0.1134 0.2454 0.4154 
  Ref. [11] 0.0291 0.1135 0.2454 0.4154 
  Present 0.0291 0.1134 0.2452 0.4150 

0 100 Ref. [10] 0.0406 0.1599 0.3515 0.6080 
  Ref. [11] 0.0406 0.1599 0.3515 0.6080 
  Present 0.0406 0.1597 0.3512 0.6075 

100 0 Ref. [10]  0.0298 0.1162 0.2519 0.4273 
  Ref. [11] 0.0298 0.1163 0.2519 0.4273 
  Present 0.0298 0.1162 0.2515 0.4269 

100 100 Ref. [10]  0.0411 0.1619 0.3560 0.6162 
  Ref. [11] 0.0411 0.1619 0.3560 0.6162 
  Present 0.0411 0.1617 0.3557 0.6156 

 

Figure 3 shows the effect of the thickness ratio a/h on the dimensionless natural frequencies of 
both cross-ply and angle-ply simply supported laminates with and without the elastic 
foundation. As shown in this figure, the dimensionless natural frequencies increase with 
increasing thickness ratio and number of plies. Besides, the frequencies of laminates increase 
when foundation parameters increase, this increase is more significant in cases of Cross-ply 
laminates. 
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Fig 3. The effect of side-to-thickness ratio on fundamental frequency of simply supported anti-symmetric 

(0/90)n cross-ply and (45/-45)n angle-ply square laminates on the elastic foundation (E1/E2=40). 

 

Figure 4 illustrates the variations of dimensionless fundamental frequencies of anti-symmetric 
cross-ply (0/90/0/90) laminate on elastic foundation against orthotropic ratio E1/E2. It is seen 
that an increase in the degree of orthotropy produces an increase in the fundamental frequency. 
Additionally, it is observed that the frequencies of laminates increase when foundation 
parameters increase. 
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Fig 4. Variation of fundamental frequency  versus orthotropy ratio for simply supported anti-symmetric 

laminated (0/90/0/90) square plate on the elastic foundation (a/h=10, (a): Ks=10, (b): Kw=100). 

 

The effects of angle   on the dimensionless fundamental frequencies of angle-ply ( /- ) 
laminate with different values of foundation parameters are shown in Figure 5. It is found that 
the curves are symmetric to the line of 45    and it presents the highest values of fundamental 
frequencies for all cases. 
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Fig 5. Effect of the lamination angle on fundamental frequency of simply supported anti-symmetric 

laminated ( /- )1 angle-ply square plate on the elastic foundation (a/h=10, (a): Ks=10, (b): Kw=100). 

3.2. Buckling analysis 

For buckling analysis, it is also begun with numerical validation to verify the accuracy of the 
present mathematical models in predicting buckling analysis of Laminated Composite Plates 
with Elastic Foundation. A simply supported anti-symmetric cross-ply (0/90)n square laminates 
subjected to uniaxial compressive load is considered. Figure 6 shows a comparison between the 
present solutions and the solutions obtained by Reddy and Khdeirt (1989). From this figure, it 
can be seen, the present solutions are almost identical with solutions obtained by Reddy and 
Khdeirt (Reddy, 1989) for all different values of orthotropic ratio.   
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Fig 6. Comparison of the uniaxial buckling load N of simply supported anti-symmetric  

Cross-ply square laminates (a/h=10, Kw=Ks=0). 

 

Figure 7 contains plots of dimensionless uniaxial critical buckling load versus thickness ratio a/h 
of a simply supported anti-symmetric cross-ply and angle-ply with and without the elastic 
foundation. The results show that the dimensionless buckling loads increase with increasing 
thickness ratio and number of plies. Also, it can be observed that the dimensionless buckling 
loads of laminates increase when foundation parameters increase, this increase is more 
significant in cases of Cross-ply laminates. 
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Fig 7. The effect of side-to-thickness ratio on uniaxial buckling load N of simply supported anti-symmetric 

(0/90)n cross-ply and (45/-45)n angle-ply square laminates on the elastic foundation (E1/E2=40). 
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The effect of orthotropy ratio E1/E2 on dimensionless uniaxial critical buckling loads of anti-
symmetric cross-ply (0/90/0/90/0/90) laminate on elastic foundation is shown in Figure 8. It is 
seen that an increase in the degree of orthotropy leads to an increase in the dimensionless 
buckling loads. Additionally, it is observed that the dimensionless buckling loads increase when 
foundation parameters increase. 
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Fig 8. Variation of uniaxial buckling load N versus orthotropy ratio for simply supported anti-symmetric 

laminated (0/90/0/90/0/90) square plate on the elastic foundation (a/h=10, (a): Ks=10, (b): Kw=100). 

 

Figure 9 contains plots of dimensionless uniaxial critical buckling loads versus lamination angle 
  of angle-ply ( /- )1 laminate with different values of foundation parameters. It is found that 
the curves are symmetric to the line of 45    where the latter presents the largest values of 
dimensionless buckling loads for all cases. 
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Fig 9. Effect of the lamination angle on uniaxial buckling load N of simply supported anti-symmetric 

laminated ( /- )1 angle-ply square plate on the elastic foundation (a/h=10, (a): Ks=10, (b): Kw=100). 

 

4. Conclusions 

In this paper, a refined higher order shear deformation theory has been used to determine 
natural frequencies and buckling loads of simply supported antisymmetric cross-ply and angle-
ply laminated rectangular plates on two parameters elastic foundation. From the results and 
discussion it can be concluded that the theory proposed is accurate and efficient in predicting 
the vibration and the buckling responses of laminated plates.  
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The influence of the side to thickness ratio, number of layers, lamination angle, orthotropic ratio 
and elastic foundation parameters on both nondimensional fundamental frequencies and critical 
buckling loads is studied. The results showed that these parameters have significant influence 
on the buckling and free vibration characteristics of antisymmetric laminated composite plates.  

It is also concluded that the presence of elastic foundation increases buckling load and 
frequencies of antisymmetric laminates plates. While, The Winkler stiffness does not have as 
much of effect on natural frequency and buckling loads as shear layer stiffness.  
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