
J. Build. Mater. Struct. (2022) 9: 22-32 Original Article 
DOI : 10.34118/jbms.v9i1.1895  

 

ISSN  2353-0057, EISSN : 2600-6936 

Free vibrational analysis of composite beams reinforced with 
randomly aligned and oriented carbon nanotubes, resting on an 

elastic foundation 

Chatbi M 1,*, Harrat Z R 1, Ghazoul T 1, Bachir Bouiadjra M 1,2 

 
1    Djillali Liabés University, LSMAGCTP Laboratory, Sidi bel Abbés, Algeria. 
2    Thematic Agency for Scientific and Technological Research, Algeria. 
* Corresponding Author: moh-ing17@outlook.com 

Received: 17-06-2021 
 

 Accepted: 21-01-2022 

Abstract. The main interest of this paperwork is to examinate the dynamic behavior (free 
vibrational response) of carbon nanotubes (CNT) composite beams standing on an elastic 
foundation of Winkler-Pasternak’s. The affected beam consists of a polymer matrix 
reinforced with single-wall carbon nanotubes (SWCNT’s), in which, a large number of CNT’s 
reinforcement of infinite length are distributed in a linear elastic polymer matrix. In this 
study the CNT’s are considered either aligned or randomly oriented on the matrix.  
A refined high-order beam theory (RBT) is adopted in the present analysis using a new shape 
function. The refined beam theory which is summarized by differentiating the displacement 
along the beam transverse section into shear and bending components, initially the material 
properties of the composite beam (CNTRC) are estimated using the Mori-Tanaka’s method. 
The beam is considered simply supported on the edge-lines. NAVIER’s solutions are 
proposed to solve the boundary conditions problems. Since there are no results to compare 
with in the literature; the results in this study are compared with a free vibrational analysis 
of an isotropic beam.  Several aspects such as the length/thickness ratio, volume fraction of 
nanotubes, and vibrational modes are carried out in the parametric study. 

Key words: Free vibration analyses, Mori-Tanaka’s method, Carbon nanotube reinforced beams, Elastic 
foundation, refined beam theory. 

1. Introduction 

In the last few decades, carbon nanotubes (CNT’s) were presented as a huge revelation in all 
construction fields because of their significant mechanical and electrical properties. CNT’s were 
classified among the toughest materials in the world. In addition CNT’s are easily employed as a 
result of their high flexibility. As researches continued to investigate, CNT’s were becoming more 
usable especially in providing high performance materials for construction domains. Therefore, 
CNT’s can be potentially integrated in the aerospace industry. (Thostenson et al., 2001; Esawi 
and Farag, 2007).      

In civil engineering the preferable application of polymers/carbon nanotube is found in 
reinforcing structural elements such as beams and plates to improve several mechanical, 
thermal and electrical material characteristics. Furthermore, CNT’s have been recently accepted 
as an excellent candidate for strengthening polymer composites because of their high elastic 
modulus, tensile strength and their low density which makes the resultant composites more 
efficient and remarkably light weighted. 

The material properties of composites reinforced with carbon nanotubes (CNTRC) have been 
examined by many investigators, such as Fidelus et al. (2005) and Hu et al. (2005). In the same 
way, Shi et al. (2004) studied the stiffening effect of carbon nanotubes by employing the Mori-
Tanaka effective-field method to calculate the effective elastic moduli of composites while 
considering the effects of waviness and agglomeration of CNT’s on the effective stiffness. 
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On the other hand, there is still a lack of studies on the mechanical behavior of CNTRCs in the 
open literature. For example, Ke et al. (2010) analysed the non-linear free vibration of CNTRC 
using Timoshenko’s theory of beams. Yas and Heshmati (2012) presented the dynamic response 
of nano composite beams with carbon nanotubes oriented randomly under a dynamic load. 
Wattanasakulpong and Ungbhakorn (2013) studied the bending, buckling and vibration 
behaviors of carbon nanotube-reinforced composite beams resting on elastic foundation. 
Furthermore, Tegrara et al. (2015) analyzed the mechanical behavior of nanotube-reinforced 
composite beams using the refined beam theory (RBT). Yas and Samadi (2012) evaluated the 
free vibrations and buckling responses of carbon nanotube-reinforced composite Timoshenko 
beams resting on elastic foundation. 

In the current analysis, and in order to estimate the engineering constants (Young’s modulus and 
Poisson’s ratio) of composites with aligned or randomly oriented straight single-walled 
nanotubes in polymer matrix, Mori-Tanaka effective-field method is employed (Suresh, 1998). 
Thereafter, we aim to analyze the free vibrational response of CNT reinforced beams placed on 
elastic foundation.  

2. Mathematical formulation  

2.1. Material properties of composites reinforced with aligned CNT’s 

We consider first a polymer isotropic matrix with Young’s modulus   , and Poisson’s ratio   .   
The polymer matrix is strengthened with straight transversely isotropic CNT’s aligned in the x-
axis direction (Figure 1). The stress-strain relation of the composite can be expressed as follow. 
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Where k, m, l, n, and p are Hill’s elastic moduli (Hill , 1965). 

Fig 1. Geometry of CNTRC beam resting on elastic foundation. 

The effective material properties of CNTRCs can be estimated using the Mori-Tanaka’s method, 
such that: 

 (2) 
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Where  ,   ,   ,   ,   ,   , and   , are the elastic constants of SWCNT’s. 

Therefore, the expressions of the effective parallel and normal Young's modulus of CNTRCs are 
as follows. 
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2.2. Material properties of composites reinforced with randomly oriented CNT’s 

When CNTs are completely randomly oriented in the isotropic matrix with Young’s modulus   , 
and poisson’s ratio   , the composite is then considered isotropic, and its bulk modulus K and 
shear modulus G are defined as: 
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In which   , and    are the bulk and shear modulus of the polymer matrix respectively. 
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The effective Young’s modulus E and Poisson’s ratio n of the composite are given by: 
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2.3. Displacement field  

Based on the refined plate theory assumptions (Shimpi et al., 2006), the displacement field in the 
refined theory can be written as:  

{
 (     )    (   )   

   (   )
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 (8) 

Where u0 is the mid-plane displacement of the beam along the x-direction, ‘wb’ and ‘ws’ are the 
bending and shear components of transverse displacement in z-direction, respectively.  

While the function f(z) represents shape functions determining the distribution of the transverse 
shear strains and stresses across the plate thickness; if the function is neglected, the 
displacements are reduced to the classical plate theory (CPT), else if the function is linear, the 
displacements are reduced to the first order deformation theory (FSDT).  

In this analysis a new shape functions are proposed.  
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It should be noted that unlike the first-order shear deformation theory, these theories do not 
require shear correction factors. The linear strain expressions associated with the displacements 
in the equation 8, are: 
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The strain components derived from the displacement field are well founded for thin and thick 
plates, where:  
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In which, the prime indicates differentiation of the function with respect to z, such that: 
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The expression of the constitutive relations can be expressed as:  

         

           
(13) 

Where Qij are the elastic constants, namely. 
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2.4. Governing equations  

The virtual work’s principle is applied to develop the equations of motion: 

∫ (        )
 

 

     (15) 

Where    and    are the virtual variation of the internal strain energy, the virtual work done by 
external forces.  

Firstly, the expression of the virtual strain energy is. 
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By substituting equation 10 into equation 16, we find:  
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By substituting equation 14 into equation 17, we obtain the stress resultants in form of material 
stiffness and displacement components: 
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Where                    , are the plate stiffness, defined by: 
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The expression of the virtual work done by external loads while considering the effect of the 
elastic foundation can be expressed as follow.  
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Where Kw, and Ks are the Winkler and shearing layer spring constants. 

For the dynamic analysis, the virtual kinetic energy (  ) is required for the equations of motion, 
which takes the form 

   ∫  ( )( ̇  ̇   ̇  ̇)
 

 

 (21) 

Following the NAVIER closed-form solutions, we assume the following solution form for the 
displacement functions expanded in double trigonometric Fourier’s series that satisfies the 
boundary conditions. 
At edges 0x  and x a  

Either 0xN   or 
0u is prescribed 

Either 0b

xM   or /bdw dx  is prescribed 

Either 0s

xM   or is prescribed 

Where stress resultants can be expressed as follows: 
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and I0, I2 are mass inertias defined as: 
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By substituting equation 8 into equation 13, we obtain the stress resultants in form of material 
stiffness and displacement components: 
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2.5. NAVIER solutions 

To formulate the closed-form solutions for bending and buckling problems of simply supported 
laminated plates, the NAVIER method is employed:  
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Where    ,     and     are the arbitrary parameters to be determined.        , and n are 
vibrational mode shape. 

Substituting equation 23 into the equilibrium equations, we obtain the closed-form solutions 
which are presented in the following matrix form. 
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3. Results and Discussions 

The NAVIER solution was employed to determine the natural frequencies of CNT composite 
beams by solving the eigenvalue (equation 24). Before analyzing the free vibrations of carbon 
nanotubes reinforced composite (CNTRC) beams resting on Winkler-Pasternak elastic 
foundation, the material properties were calculated and presented in (Figure 2) for the aligned 
CNT’s and (Figure 3) oriented CNT’s, these properties (Young’s modulus) were defined using the 
Mori-Tanaka’s approach, such that the Young’s modulus and Poisson’s ratio of polystyrene are 
           and       , respectively. For the reinforcement, we use the following 
representative values of the elastic constants of SWCNT’s:           ,          ,    
        , and          , which are taken from the analytical results of Popov et al. (2000). 
In which             and    are the Hill’s elastic moduli for the reinforcing phase (CNT’s). 
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Fig 2. Young’s modulus in terms of the fraction volume of aligned CNT’s 

 

Fig 3. Young’s modulus in terms of the fraction volume of oriented CNT’s 

Figures 2 and 3 show the variation of young’s modulus of CNTC’s in terms of the volume fraction 
of CNT’s, knowing that the young modulus of CNT’s in the fibers direction is two orders of 
magnitude higher than the normal young modulus, the CNT’s are considered highly anisotropic. 
It is observed from (Figure 2) that, because of CNTs’ anisotropic property, the elastic modulus of 
the composite in the reinforcement direction increases much more rapidly with the volume 
fraction “cr” than the normal to the CNT direction. When the CNT’s volume fraction cr=0, the 
composite is pure isotropic polystyrene. In a similar way, (Figure 3) presents the effective 
Young’s modulus versus the volume fraction of randomly oriented, straight CNTs in the same 
polystyrene matrix, it shows that the young modulus of the oriented carbon nanotubes 
reinforcement increases in parallel with the increase of the volume fraction of CNT’s.        

From Figures 2 and 3 it can be seen that the aligned CNT’s in the polystyrene matrix is much 
more effective than the oriented CNT’s in terms of the young modulus magnitude. 
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Fig 4. Dimensionless natural frequency of CNTRC beam (L=10h, n=1). 

For the vibrational analysis of CNTRC beams resting of elastic foundation, and in order to verify 
the accuracy of the present mathematical models and the proposed shape shear function in 
predicting vibrational analysis of beams. We used the following properties:           ,  
       and               for the polymer matrix.           ,          ,    
        ,          , and        , for the SWCNT’s reinforcements. 

All analytical results are presented in the dimensionless forms which can be written as follows:  

    √
   
   

 

Where     and     are   and    of beam made of pure matrix material, respectively. 

For the elastic foundation spring constants, the following expressions are used: 

     
   

  
                     

Figures 4 and 5, present the dimensionless frequencies of CNTRC beam with, the reinforcement 
which are considered oriented in the polystyrene matrix, the influence of CNT volume fraction is 
obvious in compare to an isotropic polymer beam (Cr=0), the more “cr” presence gets raised in 
the matrix, more the dimensionless natural frequency increased.   

Fig 5. Dimensionless natural frequency of CNTRC beam (L=10h, n=1,              ). 
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4. Conclusions 

In the present study, the material properties of carbon nanotubes reinforced composite beams 
are defined using the Mori-Tanaka’s method, while considering aligned and randomly oriented 
CNT’s, it is concluded that the aligned reinforcement in the polymer matrix is much more 
effective than the randomly oriented CNT’s, because CNT’s laid in an aligned way have high 
properties due to the high elastic properties of the CNT’s in disposition direction. 

As well a dynamic study of CNTRC beams was presented in this work with and without the 

elastic foundation, the spring    and shear layer    constants of the elastic foundation have a 

very minor effect on the vibration frequencies regardless of CNT’s volume fraction in the 

polymer matrix.   
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