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Focus and restrictions.  This paper focuses on the structural application of the material 
biocomposite in bridge building. No experimental tests were executed during this research. 
This paper is the result of two underlying reports: Literature research and applied research. 
These underlying reports are not published and are in possession of the author of this paper, 
The Hague University of Applied Sciences and Antea Group B.V. 
 
Abstract. Biocomposite materials are becoming more interesting to use in infrastructural 
projects due to their biodegradable, renewable, recyclable and sustainable properties. With a 
relatively low density, it is an interesting building material regarding a bridge deck. When 
designing with biocomposite the following factors are important to consider: material 
design, fibre treatment, coating and manufacturing technique. A PLA-Bamboo biocomposite 
was applied to an existing design of a bridge deck made out of synthetic composite. Due to its 
randomly oriented fibres and its equally designed lamellae, the cross section was considered 
homogeneous and the stresses were calculated according to ‘Hooke’s law’. The unity checks 
were performed according to ‘CUR 96’ with an own devised material factor of 5,69. This 
factor was calculated in this study for biocomposites with untreated fibres. The calculations 
showed that the original material (synthetic composite) was not directly replaceable by the 
PLA-Bamboo biocomposite. An alternative design of the deck (deck height of 1 meter and 
doubled thicknesses of the skins and web plates, 40- and 10 mm) showed better results. This 
design complied for the unity checks for strength. 
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1. Introduction 

At this moment, most of the bridges in the world are made out of the traditional materials: wood, 
steel and reinforced concrete. Developments in ‘composite bridges’ started roughly two decades 
ago. This new material has proven itself to be a strong and eco-friendly material. Another 
interesting material, when sustainability is an important factor, is biocomposite. Currently, there 
is no bridge in the infrastructure which is made out of biocomposite (according to the definition 
set out in this paper, see below). This brings up the following question: Is biocomposite a good 
alternative material for structural application regarding a small bridge?  

Antea Group B.V. is interested in new and innovative materials for infrastructure with the 
circular design taken into account. With these design considerations, knowledge is gained about 
what is possible now and perhaps in the future. 

In this paper the following definition is used in terms of biocomposite: a composite where all of 
the elements of the construction (fibres, resins and optional core materials) exist out of 100% 
organic material, apart from a coating and fibre treatment. 

2. Methodology 

This research is based on a literature review. No experimental tests were done during this 
research as mentioned in ‘Focus and restrictions’. The literature used for this research is mainly 
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adapted from published papers. With the knowledge of this literature review, an applied 
research was carried out. In this applied research, biocomposite was applied on a design of a 
synthetic composite bridge deck. The outcome of the calculations showed if biocomposite can be 
used on this design and where the weak spots are in the material regarding this application. 

3. Pros and Cons 

Due to the use of biological materials, biocomposite is biodegradable, renewable, recyclable and 
sustainable. These are important benefits in regards to the growing environmental awareness 
(Satyanarayana, 2009; Mohanty, 2000). With an eye on the increasing scarcity of other materials 
(e.g. oil for synthetic composites), biocomposite can be an alternative material in the future. Next 
to this biocomposite has a relatively low density and low coefficient of thermal expansion which 
reduces loads on the structure (Kalia, 2009). The relatively low density makes biocomposite an 
interesting building material for bridge decks. This reduction in weight could result in less deep 
foundation piles or even a shallow foundation. Biocomposite also has a wide range of materials 
(Nijssen, 2015). This variety gives the designer the opportunity to find the materials for his/her 
biocomposite which are most favourable for the project (low costs on raw materials, high 
mechanic properties, etc.).  

A great disadvantage of biocomposite is the poor adhesion between fibre and matrix. This poor 
adhesion results in low mechanical properties of the biocomposite (Kalia, 2009). Because 
biocomposite is, in general, a hydrophilic material, it absorbs water. This water absorption 
significantly reduces the mechanical properties (Singh, 2000). The mechanical properties can 
also differ in respect to the climate of origin, harvest method, weather- and soil conditions 
(Kalia, 2009).  

4. Important factors 

Multiple important factors when designing a bridge out of biocomposite are discussed in this 
chapter. 

4.1. Material design 

When considering the design of the biocomposite the fibre orientation and fibre volume fraction 
are important aspects which can have a great positive impact on the mechanical properties of 
the biocomposite. (Shalwan & Yousif, 2013). In comparison with woven or randomly oriented 
fibres, unidirectionally oriented fibres (bundles) have a significantly higher tensile strength and 
stiffness in the axial direction. In this case, the strength and stiffness in the radial direction are 
determined by the resin (Nijssen, 2015). When concerning a bridge deck, the forces in the 
transverse direction are significantly lower than in longitudinal direction. Another option is to 
use different orientations for each layer in the biocomposite. In this case, the strength and 
stiffness in the axial and radial direction of the laminate can be influenced. 

The fibre volume fraction is the ratio of the fibre content of the biocomposite. This fibre volume 
fraction can also be modified to gain a stronger biocomposite. A higher fibre volume fraction 
results in general in an increase in mechanical properties of the biocomposite; therefore, a high 
fibre volume fraction can be favourable when the biocomposite has a structural application 
(Shalwan & Yousif, 2013). 

4.2. Fibre treatment 

The use of natural fibres in a composite, results in poor adhesion with the matrix. Fibre 
treatment can clean and modify the surface of the fibre and thus improve the surface roughness. 
This treatment results in better adhesion with the matrix and ultimately higher mechanical 
properties of the biocomposite (Kalia, 2009). 
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Previous research shows that the chemical treatments organosilane and alkali increase the 
mechanical properties of the biocomposite considerably. Thermal-, plasma- and corona 
treatment (physical treatments) also have a strong positive influence on the mechanical 
properties of tensile strength and Young’s modulus (Faruk, 2012).  

4.3. Coating 

Biocomposite is, in general, a hydrophilic material. Due to this, biocomposite is likely to absorb 
moisture. This moisture absorbance decreases the mechanical properties significantly (Singh, 
2000). The effect of moisture absorbance on the strengths of a jute fibre composite is shown in 
Figure 1. 

A hydrophobic coating on the biocomposite could prevent the absorption of moisture. The 
coating needs to resist moisture, UV-light, corrosion and low- and high temperatures in order to 
be applicable on a bridge. Polyesters are widely used as a coating material because they often 
have these properties.  

 

Fig  1. The effect of humid conditions on strengths of a jute composite (Singh, 2000). 

4.4. Manufacturing techniques 

Biocomposite can be manufactured using traditional composite manufacturing techniques, e.g. 
compression moulding, vacuum infusion, pultrusion and mixing (Faruk, 2012). Of these 
techniques mixing has a low quality as result, contrary to the others mentioned (Nijssen, 2015).  

Vacuum injection or compression moulding is best when the bridge consists of a small number 
of parts. Figure 2 illustrates the process of vacuum infusion. Pultrusion can be used to make piles 
for deep foundation or structural profiles. In the latter case, the structure is constructed out of 
many parts which increase building time. 

When a core material is used (in the case of a sandwich biocomposite) wet lay-up, prepreg lay-
up or the adhesive bonding method can be used (Karlsson & Aström, 1996). 
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Fig  2. Vacuum infusion proces (Gent, 2014). 

5. Bridge deck design 

To test the structural application of the biocomposite material, it was applied to an existing 
bridge deck design. This design was originally made out of glass fibre reinforced polyester resin 
(synthetic composite). 

5.1. Geometry 

The deck is made out of a sandwich structure with 20 mm thick skins. The deck has a length of 
16 meters and has 5 mm thick (centre distance 200 mm) web plates in both longitudinal- and 
transverse direction. The cross section of the deck is illustrated in Figure 3. 

 

Fig  3. Cross section deck. Where: B=4500mm, H=460mm. 

5.2. Materials 

Extensive research was done on the mechanical properties of different biocomposites. There 
was only one biocomposite to apply to this design. This biocomposite exists out of a PLA resin 
with bamboo fibres. The fibres are untreated and the fibre volume fraction has a value of 38% 
(fibre weight fraction=30%). The properties, except the shear strength and the interlaminar 
shear strength (ILSS), were extracted from ‘CES Edupack 2016, sheet: PLA(30% natural fiber)’. 
The shear strength was calculated according to ‘Von Mises’ theory (τmax=σY/√3) (Anderson, 
2005). The ILSS of a PLA-Bamboo biocomposite or any other biocomposite, could not be adopted 
from the available literature. This value was adapted from a synthetic composite (glass fibre 
reinforced polyester), knowing that the actual value can be much lower. An assumption could 
not be made for this value due to the missing of research in this area. This makes the calculations 
in this research incomplete. Table 1Erreur ! Source du renvoi introuvable. presents the used 
properties in this study of a PLA-Bamboo biocomposite. 

Research has shown that the adhesion between core material and skins is poor. The core 
material is therefore not included in the calculations. The function of the core material is only 
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practical (mould in manufacturing). Balsa wood can be used as core material. This and the PLA-
Bamboo biocomposite is shown in Figure 3. 

Table 1. Properties PLA-Bamboo biocomposite. 

Property Value Unit 

Fibre orientation Random [-] 
Fibre volume fraction 38.0 [%] 

Density 1.30 [g/cm3] 
Tensile strength 57.0 [MPa] 

Compressive strength 88.9 [MPa] 
Shear strength 32.9 [MPa] 

Interlaminar shear strength 20.0 [MPa] 
Young’s modulus 5.23 [GPa] 

Shear modulus 1.89 [GPa] 
Poisson’s ratio 0.39 [-] 

Glass temperature 53.0 [°C] 

5.3. Calculation method 

It has been proven that the traditional ‘rules of mixtures’ (ROM) are not directly applicable on 
biocomposite (Facca, Kortschot, & Yan, 2006) (Facca, Kortschot, & Yan, 2007). The calculated 
values differ significantly from the experimental values. Because of this, the use of experiments 
for determining the mechanical properties of a biocomposite is inevitable. The next problem in 
designing with biocomposite is to calculate the occurring stresses. Three methods where 
considered. 

5.3.1. Classical laminate theory 

The ‘classical laminate theory’ (CLT) is a theory that calculates the elongations and stresses in 
lamellae individual. The fibre orientations may differ from one another. For the use of the CLT, 
the thickness in the cross section must remain the same. This is not the case in the design of the 
deck (Figure 3). In addition, the shear forces are not included in the CLT (Nijssen, 2015). Due to 
these reasons, the classical laminate theory cannot be used for this research. 

5.3.2. Inhomogeneous cross section 

Because the cross section of biocomposite exists out of two different materials with different 
strength and stiffness properties, it can be considered an inhomogeneous cross section. The 
adhesion between fibre and matrix must be perfect for this method. This is because the strength 
and stiffness of the materials are taken into account separately. The interaction between fibre 
and matrix is not included. The adhesion between fibre and matrix is very unpredictable for 
biocomposites (Faruk, 2012). Because of this unpredictability, the method based on a 
inhomogeneous cross section is not a good method to calculate the stresses in a biocomposite. 

5.3.3. Homogeneous cross section 

In this method it is assumed that the properties in the entire cross section of the structure are 
equal. In order to ensure this, the lamellae must be equal to each other as well. This includes, 
fibre volume fraction and fibre orientation. When a material has a homogeneous cross section, 
‘Hooke’s law’ can be applied. In order to calculate according to Hooke’s law, a linear relation is 
needed in the stress-strain curve of the material (Welleman, 2011). Studies have proven that the 
stress-strain curve of a biocomposite increases linearly to a maximum fibre volume fraction of 
50% (Ochi, 2007; Akil, 2011; Shin, 1989).  

A biocomposite is manufactured in lamellae, due to this the adhesion between these lamellae 
needs to be strong enough. These lamellae are not included in the design of a homogeneous 
cross section but the adhesion will be checked according to CUR 96 (see Table 4, interlaminar 
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shear stress). For these reasons, the method based on a homogeneous cross section is a good 
method to calculate the stresses in a biocomposite. This method was used for this study. 

5.3.4. Standards 

Several standards where used for calculating the structural safety of the deck. The ‘Eurocodes’ 
where used for the design of the loads and the safety factors. The unity checks where performed 
according to ‘CUR 96’. This is a recommendation (not a standard) for designing structures with 
glass fibre reinforced synthetic resins (CUR, 2003). The reason that CUR 96 was used is because 
of the absence of a standard (or recommendation) on biocomposite and the absence of a 
standard on synthetic composite. 

For this study, the material factor was adapted for the use of CUR 96. This factor was distracted 
from differences between calculated values of the tensile strength and young’s modulus 
according to the ROM and the experimental values. 

The highest calculated factor in Table 2 has a value of 5.69 and counts for all biocomposites with 
untreated fibres which are produced according to the following methods: vacuum injection, 
compression moulding, prepregs and pultrusion. Calculating the inverse of this factor gives a 
0.18 strength correction factor. 

Table 2. Determination material factor (Graupner, 2009; Ochi, 2007). 

Property Measured Calculated Unit Factor 

Tensile strength 41 224 MPa 5.46 
Tensile strength 58 330 MPa 5.69 
Tensile strength 53 241 MPa 4.55 
Young’s modulus 4242 4740 MPa 1.12 
Young’s modulus 8064 5990 MPa 0.74 
Young’s modulus 7139 6369 MPa 0.89 
Tensile strength 131 178 MPa 1.36 
Tensile strength 211 297 MPa 1.41 

6. Results 

6.1. Stresses and unity checks 

Table 3 presents the occurring stresses in the deck by position (see Figure 4). 

Table 3. Stresses in deck. 

Position σN,max 
[MPa] 

σM,1,max 
[MPa] 

σM,2,max 
[MPa] 

τv,max 
[MPa] 

τw,max 
[MPa] 

1 0.11 30.39 0.70 0.00 0.12 
2 0.11 0.00 0.73 7.28 0.12 

Where: 
σN = Stress as a result of axial force 
σM,1 = Stress as a result of a moment in axial direction 
σM,2 = Stress as a result of a moment in radial direction 
τV = Stress as a result of shear force 
τW = Stress as a result of torsion 
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Fig  4. Positions in deck (heester, 2015). 

The stresses in Table 4 must be checked according to CUR 96 (CUR, 2003). 

Table 4. Unity checks (CUR, 2003). 

UC Position 

[1] Tensile stress in fibre direction 1 
[2] Compression stress in fibre direction 1 
[3] Tensile stress perpendicular to fibre direction 2 
[4] Compression stress perpendicular to fibre direction 2 
[5] Shear stress in cross section 2 
[6] Interlaminar shear stress 2 
[7] Combined stress (tensile) 1 
[8] Combined stress (compression) 1 

Table 5 shows the calculated UC-values of each unity check. Only the maximum UC-values are 
given for each unity check. 

Table 5. Unity checks by design. 

 H t1  t2  Unity check 

 [mm] [mm] [mm] [1] [2] [3] [4] [5] [6] [7] [8] 
Original design 460 20 5 4.23 2.71 0.10 0.06 1.75 2.88 17.92 7.37 

Alternative design 1000 40 10 0.89 0.57 0.02 0.01 0.43 0.70 0.79 0.33 

Due to the randomly oriented fibres the stresses are checked in longitudinal (1 and 2) and 
transverse (3 and 4) direction of the deck. With a highest calculated unity check of 17.92, the 
original design of the bridge deck does not comply when a PLA-Bamboo biocomposite is used as 
material. The values of the unity checks can decrease when a different biocomposite is used or 
when fibre treatment is applied. This increases the mechanical properties and gives an 
opportunity to apply a lower material factor. 

6.2. Alternative design 

An adjustment on the design of the cross section of the deck can decrease the occurring stresses. 
For this study the thickness of the skins and web plates where doubled (40- and 10 mm) and the 
height of the deck was increased up to 1.0 meters (+ 117%, see Table 5 and Figure 5). The design 
of the biocomposite remained unchanged due to the lack of information about the properties of 
biocomposites. The highest unity check of 0.89 was calculated. This shows that this 
biocomposite can be applied, but extreme adjustments must be done to the design. A different 
biocomposite may show better mechanical properties and results in which no (extreme) 
adjustment to the design of the cross section are necessary. 

7. Conclusions 

Several conclusions have been made during this research on the structural application of 
biocomposite on a bridge. 
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1. In comparison with synthetic composite, biocomposite has lower mechanical properties 
(tensile strength biocomposite: ca. 60 MPa, synthetic composite: ca. 200 MPa). The unity 
checks in the deck complied for strength with an adjustment, when the synthetic 
composite was replaced by a PLA-Bamboo biocomposite. The geometry of the deck 
(height and thicknesses) needed to be doubled (height + 117%, thicknesses + 100%) in 
the reference design. 

2. Biocomposite has a linear stress-strain curve up to a maximum fibre volume fraction of 
50%. 

3. With a safety factor of 5.69, CUR 96 can be used as recommendation for designing with 
biocomposites with untreated fibres. 

4. In comparison with other building materials (steel, concrete, synthetic composite etc.), 
biocomposite is eco-friendlier, biodegradable and it does not deplete other materials like 
iron and oil (in synthetic composite). The relatively low density (ca. 1.3 g/cm3, steel: ca. 
7.9 g/cm3) makes biocomposite an interesting building material for bridge decks. Due to 
these benefits, biocomposite can be a good alternative building material. 

5. The design of the biocomposite (fibre orientation and fibre volume fraction) and fibre 
treatment are important factors regarding the mechanical properties of the 
biocomposite. 

Biocomposite can be manufactured using traditional composite manufacturing techniques like 
vacuum infusion, compression moulding and pultrusion. 

8. Recommendations 

There are four recommendations made based on mechanical properties, material design, 
calculation method and time-dependent properties: 

1. There is still too little knowledge about the properties of biocomposites. Most research 
currently done is about the tensile strength and Young’s modulus of biocomposite. When 
designing a bridge, properties such as compressive strength, (interlaminar) shear 
strength, shear modulus and poisson’s ratio are also important. More research on these 
properties is needed. With more research and thus knowledge about the mechanical 
properties of the biocomposite, it can also be possible to reduce the material factor 
calculated in this research. 

2. The fibres flax, nettle, hemp, abaca and silk with a PLA resin can be a biocomposite with 
high mechanical properties. An organosilane-, alkali-, thermal-, corona- or plasma fibre 
treatment show good adhesion between fibre and matrix and thus results into higher 
mechanical properties of the biocomposite. The mechanical properties of these 
combinations must be studied. 

3. More research on calculation the occurring stresses in biocomposites is needed. The 
‘Classical Laminate Theory’ can be applied but has its limitations (shear strength and 
thickness in the cross section). A method based on a homogeneous cross section can only 
be used when the properties for each lamellae are equal to one another. 

A bridge is mostly designed for numerous years. Because of this, the time-dependent properties 
are important. More research is needed to the creep- and fatigue behaviour of biocomposite. 
Also the effect of time on the Young’s modulus must be studied. 
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