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Abstract. This study aimed to investigate the feasibility of African-Birch (AB) Timber-
Reinforced Concrete (ABTRC) as an eco-friendly alternative to traditional steel-reinforced 
concrete. The objectives were to determine some material properties (e.g. specific gravity, 
moisture content, fineness modulus, sieve analysis etc.), develop mix designs, and evaluate the 
flexural strength of ABTRC beams. Four reinforcement configurations {Steel (hanger bar) + Steel 
(main bar), Steel (hanger bar) + AB (main bar), AB (hanger bar) + Steel (main bar), and AB 
(hanger bar) + AB (main bar)} were tested, with beams cured for 3, 7, 14, 21, and 28 days. Some 
physical properties were determined for African-Birch timber (specific gravity, moisture 
content and tensile strength), fine and coarse aggregates. A mix design was developed using the 
BS 196-3-2016 (1:2.39:3.24 and water-cement ratio of 0.6). The flexural strength was evaluated 
using a 3-point bending test on a Universal Testing Machine (UTM). The results/findings 
demonstrated a significant 127% increase in flexural strength for Steel (hanger bar) + Steel 
(main bar), while AB (hanger bar) + Steel (Main bar) improved by 19.32%. AB (hanger bar) + 
AB (main bar) exhibited the lowest strength values. While Steel-based and hybrid 
configurations showed minimal density changes, AB (hanger bar) + AB (main bar) experienced 
a 22.32% reduction. Additionally, ultimate loadingss increased by 19.4% for AB (hanger bar) + 
Steel (main bar) and 27.1% for Steel (hanger bar) + Steel (main bar), highlighting the potential 
of African-Birch timber for sustainable construction applications. 

Key words: African-Birch Timber-Reinforced Concrete (ABTRC), sustainability, flexural strength, hybrid 
reinforcement, eco-friendly construction. 

1. Introduction 

Timber-reinforced concrete (TRC) has emerged as a promising construction material, combining 
the benefits of timbers and concrete to create a more environmentally friendly and energy-
efficient built environment (Abera, 2024). By incorporating timber elements into the concrete 
mix, TRC reduces the carbon footprint associated with traditional concrete production (Immanuel 
& Baskar, 2023). The substitution of cement with renewable timber also mitigates climate change, 
as cement production is a significant contributor to greenhouse gas emissions (Elinwa & 
Abdulrazaq, 2020; Izumi et al., 2021). Additionally, TRC enhances thermal insulation properties 
and improves structural performance. 

This study aims to determine some of the physical and engineering properties of materials to 
develop an appropriate mix design while preparing steel and AB reinforcement into specific 
configurations for casting reinforced concrete beams. The flexural strength of African-Birch 
timber-reinforced concrete beams will be compared with traditional steel-reinforced concrete 
beams at different curing ages (3, 7, 14, 21, and 28 days). 

The mechanical properties of timber, including density, moisture content, and strength, are 
critical to the performance of timber-reinforced concrete (TRC) beams (Yin et al., 2021). African 
Birch timber, for instance, has been found to possess a tensile strength equivalent to 
approximately 16% of high-yield steel and 31% of mild steel at 18% moisture content (Bello & 
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Jimoh, 2017). In this present study, it had an average moisture content of 9.83% which is expected 
to influence the measured mechanical properties. However, the variability in timber's mechanical 
properties presents a significant challenge to the widespread adoption of TRC (Abdulraheem et 
al., 2024). 

Studies utilizing three-point bending tests have demonstrated that TRC beams can achieve 
flexural strength comparable to or even superior to that of traditional steel-reinforced concrete 
beams (Alrshoudi, 2021). Research also highlights the impact of curing duration, with longer 
curing ages significantly enhancing TRC beams' flexural performance (Yin et al., 2021). Despite its 
promising potential, TRC still faces limitations, particularly due to the inconsistency in timber 
properties, which can affect structural reliability (Venigalla et al., 2022). 

The construction industry stands to benefit greatly from TRC, as it offers a more sustainable and 
energy-efficient alternative to conventional materials (Kirupakaran, 2024). To facilitate its 
broader adoption, further research is needed to establish standardized selection criteria for 
timber reinforcement, optimize curing processes, and address performance variability (Niemz & 
Dunky, 2023). Advancing TRC research will contribute to the development of sustainable 
construction materials, inform industry practices and policies, and support the creation of 
environmentally friendly and structurally sound buildings (Kirupakaran, 2024). 

2. Materials and methods 

2.1. Some Physical Property Test on the Materials 

2.1.1. Fineness Modulus Test (on fine and coarse aggregate) BS 812: Part 103 1985 

The fineness modulus of fine aggregate was determined to assess its particle size distribution. The 
test involved sieving approximately 1000g of fine aggregate through a series of sieves and 
recording the weight retained on each sieve. The fineness modulus (FM) was calculated using 
equation 2.1 

Fineness Modulus (FM) = (Cumulative % Retained / 100) × 100 Equ. 2.1 

2.1.2. Sieve Analysis Test (on fine and coarse aggregate) BS: 1377- 1975, BS 1377; 1990 part 2 

The sieve analysis test was conducted to determine the particle size distribution of fine and coarse 
aggregates. Approximately 1000g of aggregate was sieved through a series of sieves, and the 
weight retained on each sieve was recorded. The percentage retained and passing were calculated 
using the equations 2.2 and 2.3. 

% Retained = (Weight Retained / Total Weight) × 100 Equ. 2.2 

% Passing = 100 - % Retained Equ. 2.3 

2.1.3. Moisture Content Test (on fine aggregate, coarse aggregate and African birch timber) 

The moisture content of African-Birch timber was assessed using the oven drying method 
(Abdulrazaq et al., 2024), as specified in BS812: Part 109:1990 (aggregates) and BS 373: 1957 (for 
African-birch). This method involves measuring the weight loss of timber samples after drying at 
a controlled temperature. Timber samples with dimensions 50mm x 50mm x 50mm were cut and 
weighed to record their initial weight (m1). The samples were then dried at 103°C ± 2°C for 24 
hours and re-weighed to record their final weight (m2). The moisture content (%) was calculated 
as given in equations 2.4 and 2.5: 

Mc (%) = 
𝑀2−𝑀3

𝑀3−𝑀1 
 𝑋 100%  (for aggregates) Equ. 2.4 

𝑴𝒄 (%) = ( 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑐 – 𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡   

Dry weight 
) ∗ 𝟏𝟎𝟎  (for African-birch) Equ. 2.5 
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2.1.4. Specific Gravity Test (on fine aggregate, coarse aggregate and African birch timber) (According 
to BS812: Part 109:1990) 

The specific gravity of African-Birch timber was determined according to BS EN 316:2009 (Putro 
et al., 2020) & BS812: Part 109:1990. This method involves measuring the sample's dimensions 
(length, width, and height) and also weight (mass) of sample (aggregates). The volume (V) was 
calculated as V = L × W × H, and the specific gravity (G) was calculated with equations 2.6 and 2.7 
given below. 

G = 
(𝑀)

(𝑉) 𝑋 (ρw)
                         (for timber) Equ. 2.6 

Where; 

ρw is the density of water (1000 kg/m³). The specific gravity provides valuable information on 
the timber's density and potential durability. 

G = 
(𝑀2−𝑀1)

(𝑀2−𝑀1)− (𝑀3−𝑀4)
           (for aggregates)   Equ. 2.7 

Where;      

M1 = mass of empty pycnometer, M2 = mass of pycnometer and dry soil, M3 = mass of pycnometer, 
soil and water & M4 = mass of pycnometer filled with water only. 

2.1.5. Tensile Strength Test(on African birch timber) 

The tensile strength of African-Birch timber was evaluated using a universal testing machine with 
a 10mm/min crosshead speed, as specified in BS EN 310:1993. African-birch timber (ABT) 
samples with dimensions 20mm x 20mm x 300mm were cut, and the maximum load (Fmax) at 
failure was recorded. The tensile strength (σt) was calculated using the formula as given in 
equation 2.8: 

𝑇𝑒𝑛𝑠𝑖𝑙𝑖𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (σt) =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑎𝑑 (Fmax )

𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 (𝐴)
 

Equ. 2.8 

2.2. Mix Design and Proportioning (BS EN 196-3-2016) 

The absolute volume method of batching was adopted for the batching as against the BS EN 196-
3-2016) method of design for the concrete mix. This method considers the absolute volume of 
cement, aggregates, water, and air in one cubic meter of concrete (Kirthika et al., 2020). The 
batching method used is as given in equation 2.9: 

Vc = 
𝑤

1000
+

𝐶

1000𝑆𝐺𝑐
+

𝐹.𝐴

1000𝑆𝐺𝑓
+

𝐶.𝐴

1000𝑆𝐺𝑐𝑎
 Equ. 2.9 

Where: 

Vc = Absolute volume of concrete, W = Mass of water, C = Mass of cement, FA = Fine Aggregates 

CA = Coarse Aggregate, Sgc = Specific gravity of cement, Sgfa = Specific gravity of fine aggregate 
and Sgca = Specific gravity of coarse aggregate. 

Table 1:  Summary of the mix proportion of constituent material. 

Summary of Material Content 

Material  Content (Kg) Ratio 
Cement Content (Cc) 386 1 
Fine Agg. Content 706 2.39 
Coarse Agg. content 1040 3.24 
Water-cement ratio 231.6 0.6 
NOTE 
W/c ratio of 0.5 was to coarse, as the concrete mix have zero workability. Thus w/c ration of 0.6 was 
adopted 
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The mix design yielded a mix ratio of approximately 1:2.39:3.24 (cement: fine aggregate: coarse 
aggregate) and a water-to-cement ratio (w/c) of 0.6. Initially, a w/c ratio of 0.5 was considered, 
but it resulted in zero workability. 

2.2.1. Sample Preparation and Curing 

Beam samples were cast in wooden molds and reinforced with 8mm diameter stirrups spaced at 
200mm. Four different reinforcement configurations were used, including a control sample. A 
total of four (40) batches were cast, each with two (2) samples. The samples were cured for 
various durations (3, 7, 14, 21, and 28 days) and subjected to slump and compaction factor tests. 
After casting, the samples were tamped and allowed to set before demolding and curing. 

2.3. Experimental Investigation 

2.3.1. Workability of the Concrete Mix. 

The workability of the fresh concrete mix was evaluated in accordance with BS EN 12350-2:2019 
using the slump test. An initial water-cement ratio of 0.5 was used, resulting in a zero-slump mix, 
indicating poor workability. The water-cement ratio was subsequently increased to 0.6, yielding 
a true slump of 80 mm, indicating improved workability. 

2.3.2. Flexural Strength Testing 

Flexural strength, the maximum bending stress a material can withstand before yielding, was 
determined using a three-point bending method on a universal testing machine (Wilson et al., 
2022) as seen in plate 1. The beam samples were inspected for defects and then placed on the 
supports of a universal testing machine. A controlled load was applied at the center of each beam, 
inducing bending stresses (find attached the result on the appendix). The maximum load 
sustained by the beam was recorded and used to calculate flexural strength using the following 
formula of equation 2.10 (Bello & Jimoh, 2018). 

𝐹𝑠 =
3𝑃𝑎

𝑏𝑑2  Equ. 2.10 

Where;   

P = Load, a = length of the sample, b = breath of the sample and d = depth of the sample. 

 

Plate 1:  Standard set up of specimen on a UTM machine. 

3. Results and Discussion 

3.1. Physical and Engineering Properties 

The physical and engineering properties of materials influence their structural performance, 
durability, and suitability for reinforcement. This study examines key properties of African-birch 
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timber-reinforced concrete (ABTRC) to optimize material selection, mix design, and curing 
processes for sustainable construction. Table 2 below summarizes the measured/obtained values 
of the materials obtained in the study, compares them with expected or range values from the 
literature, and provides the corresponding references for each property. 

The concrete's workability was initially poor with a 0.5 water-cement ratio, showing a zero slump. 
Increasing the ratio to 0.6 improved workability of the mix, resulting in a measured slump value 
of 80mm. The African birch wood specimens had a relatively low moisture content of 9.83%, 
suggesting their strength values are likely comparable to or higher than those reported in other 
studies with higher moisture contents (Bello & Jimoh, 2018). 

Table 2:  Summary of the Physical test on all materials used. 

 Property Material Measured Value Expected/Range 
Value 

Reference 

Specific 
Gravity 

Fine Aggregate 2.65 2.30 – 2.90 Çelik et al., (2021) 

Coarse Aggregate 2.43 2.30 – 2.90 Çelik et al., (2021) 

African-Birch 
Timber 

0.89 0.84 – 1.16 Jimoh et al., (2018) 

Moisture 
Content 

African-Birch 
Timber 

9.83% 6.01% – 12.39% Jimoh et al., (2018) 

Fineness 
Modulus 

Fine Aggregate 3.48 2.00 – 4.00 Liu et al., (2024) 

Coarse Aggregate 3.84 3.0 – 6.0 Sharaky et al., (2022); 
Kamara & Bure, (2020) 

Tensile 
Strength 

African-Birch 
Timber 

99.86 N/mm² 69.61 N/mm² – 
115.9 N/mm² 

Bello & Jimoh (2018) 

3.2. Flexural Strength against age 

 

Figure 1:  Curve showing Flexural Strength against curing ages. 

From the figure 1 above, the flexural strength of African-birch timber-reinforced concrete 
(ABTRC) beams varies significantly with reinforcement configuration and curing age. The Steel 
(hanger bar) + Steel (main bar) configuration showed a 127% strength increase, from 9.80 
N/mm² at 3 days to 22.24 N/mm² at 28 days, while Steel (hanger bar) + AB (main bar) declined 
by 38%. AB (hanger bar) + Steel (main bar) achieved the highest strength, rising 19.32% to 23.02 
N/mm². AB (hanger bar) + AB (main bar) had the lowest values, peaking at 14.31 N/mm². These 
results support Sroka et al., (2024) research on hybrid reinforcement effectiveness and contradict 
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Okeke et al., (2024) assertion of steel-only superiority. Additionally, the findings align with Wu et 
al., (2023) conclusions on the significance of curing age in TRC beam performance, highlighting 
the potential of African-Birch timber for sustainable construction applications. 

3.3. Density against Ages 

 

Figure 2:  Curve showing Density against curing ages. 

This section seeks to evaluated the density of timber-reinforced concrete (TRC) beams with Steel 
(hanger bar) + Steel (main bar), Steel (hanger bar) + AB (main bar), AB (hanger bar) + Steel (main 
bar), and AB (hanger bar) + AB (main bar) configurations at different curing ages. The AB (hanger 
bar) + AB (main bar) configuration showed a 22.32% decline, while Steel + Steel and hybrid 
configurations remained stable, with variations between -6.4% and +1.3%. These results align 
with studies on steel’s early strength (Bhogone & Subramaniam, 2021) and timber’s density loss 
moderation (Olowokere et al., 2022), highlighting African-Birch timber’s potential in TRC 
applications. 

3.4. Load against Age 

 

Figure 3:  Curve showing Load (KN) against curing age (Days). 

The load-bearing capacity of the African-birch timber-reinforced concrete (ABTRC) beams varied 
with reinforcement configuration and curing age. The AB (hanger bar) + Steel (main bar) 
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configuration showed a 19.4% increase, from 62.00 kN at 3 days to 74.00 kN at 28 days, while 
Steel (hanger bar) + AB (main bar) declined by 38.2%. The Steel (hanger bar) + Steel (main bar) 
configuration increased by 27.1%. Findings support Alrshoudi (2021) hybrid reinforcement 
benefits and Wilson & Carter’s (2021) emphasis on steel reliability, challenging Abed et al., (2022). 

4. Conclusions 

The study examined timber-reinforced concrete (TRC) beams with various reinforcement 
configurations {Steel (hander bar) + Steel (main bar), Steel (hanger bar) + AB (main bar), AB 
(hanger bar) + Steel (main bar), and AB (hanger bar) + AB (main bar)} at different curing ages. 
The results showed Steel (hanger bar) + Steel (main bar) had a 127% increase in flexural strength, 
while AB (hanger bar) + Steel (main bar) improved by 19.32%. AB (hanger bar) + AB (main bar) 
had the lowest values. Density changes were minimal for Steel-based and hybrid configurations, 
but AB + AB showed a 22.32% decrease. Load resistance of the beam increased by 19.4% for AB 
(hanger bar) + Steel (main bar) and 27.1% for Steel (hanger bar) + Steel (main bar), supporting 
the potential of African-Birch timber for sustainable construction. 
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