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Abstract. Although admixtures typically represent only 1-3% of the cement content, they play
a crucial role in one cubic meter of concrete. Despite its low proportion, it significantly
influences the rheological properties of self-compacting concrete (SCC), particularly in terms
of placement, pumping, and segregation resistance, thereby affecting flowability, compressive
strength, structural compactness, and durability.

The literature serves as a valuable resource for acquiring the necessary knowledge. A
comprehensive synthesis of admixtures was carried out, compiling various results from
existing research to deepen the understanding of their impact on the rheology of self-
compacting concrete. This study highlighted the determination of a new coefficient, K, which
is essential for accurately adjusting the required water content and thus optimizing the
rheological properties of concrete.
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1. Introduction

Self-compacting concrete (SCC) has been widely recognized as a major advancement in concrete
technology in recent decades (Ahmad Wani & Ganesh, 2022). The benefits of SCC include reduced
labor costs and improved quality control (Sari et al., 1999; Takada et al., 1998). In many cases, SCC
outperforms conventional concrete in terms of flowability, strength, structural compactness, and
durability (ACI 237R, 2007). Self-compacting concrete can flow under its weight without the need
for vibration (Da Silva & De Brito, 2015; Shi et al.,, 2015). It also facilitates overall project
constructability while ensuring optimal structural performance (de Larrard, 1999; Saak et al,,
2001). These advancements and advantages cannot be achieved without the use of admixtures.
These are often compared to the "spices of concrete”" (Kunhi Mohamed et al., 2022). When added
in small quantities, these compounds can significantly modify the macroscopic properties of
cement and concrete (Aitcin & Flatt, 2015), thereby playing a crucial role in tailoring concrete
mixes for specific applications (Flatt, 2016; Plank & Ilg, 2020). Their use is increasingly favored in
the formulation of low-carbon-footprint concrete (Flatt et al., 2012). However, the mechanisms
by which these admixtures produce the desired effects are still poorly understood (Kunhi
Mohamed et al, 2022). Although progress has been made compared to earlier studies on
hydration retardation (Young, 1972) and combining quantitative and rheological approaches for
molecular design (Marchon et al., 2017, 2019), many aspects remain unclear. The need to
understand the underlying mechanisms is further intensified by the growing demand for
sustainable concrete, which is characterized by a high replacement of Portland cement with
supplementary cementitious materials (R. Li et al,, 2021; Lothenbach et al., 2011; Scrivener et al.,
2018). These blended cements generally have lower initial reactivity, thus requiring the use of
chemical activators in combination with rheology modifiers, such as superplasticizers. This
combination raises competitive adsorption challenges that are crucial to ensure the required
combined performance in terms of strength gain and rheology (Bessaies-Bey et al., 2016; Boscaro,
2020; Plank & Winter, 2008; Yamada et al., 2001), particularly in the case of self-compacting

ISSN 2353-0057, EISSN : 2600-6936


http://www.oasis-pubs.com/
mailto:Bouabdallah.ma@gmail.com

146 Bouabdallah, ]. Build. Mater. Struct. (2025) 12: 145-169

concrete. Water reducers and high-range water reducers (superplasticizers) reduce the
interparticle attraction and produce dispersed suspensions (Aitcin & Flatt, 2015; Gelardi & Flatt,
2016). Although there are many types of water reducers, comb polymers, mainly based on
polycarboxylate ether (PCE), are the most widely used and considered the most advanced
products in the market (Plank et al., 2015). The working mechanism of water reducers is primarily
understood as being due to steric forces causing the repulsion of cement particles, which is made
possible by the adsorption of PCEs on the surfaces of dissolving or precipitating phases (Gelardi
& Flatt, 2016; Yoshioka et al., 1997). Another undesirable effect of PCEs is the retardation of
cement hydration (Jansen et al., 2012; Marchon et al., 2016, 2017). The exact molecular-level
retardation mechanism remains an open question (Kunhi Mohamed et al., 2022), although
progress has been made in the so-called delayed addition mode, where the superplasticizer is
added shortly after mixing with water (Marchon et al,, 2017, 2019). The effect of these additives
on hydration is believed to occur by inhibiting either the dissolution of the anhydrous phase or
the nucleation and/or growth of hydrates (Garci Juenger & Jennings, 2002; Marchon et al.,, 2017;
Nicoleau & Bertolim, 2016; Suraneni & Flatt, 2015; J.]. Thomas et al.,, 2009; N. L. Thomas & Birchall,
1983). It is important to note that the mechanism by which retardation occurs may differ among
admixtures and may depend on the dose used. Retardation-causing admixtures include simple
sugars, such as glucose and sucrose (Kunhi Mohamed et al., 2022). Superplasticizers create the
necessary fluidity by attaching to cement particles and inducing an electrical charge, thereby
preventing the formation of cement flocs (Aitcin & Flatt, 2015). However, regarding the fresh-
state characteristics of self-compacting concrete, different types of admixtures play an
indispensable role in their production, whether they are viscosity-modifying agents, plasticizers,
or superplasticizers. Superplasticizers are generally underdosed or overdosed (Bonneau, 1997),
which influences the rheological behavior of self-compacting concrete (Bouabdallah, 2025;
Bouabdallah et al., 2024). However, underdosing can lead to poorly dispersed Reactive Powder
Concrete (RPC) (Richard et al,, 1995), and overdosing can cause detrimental countereffects, such
as air entrainment and setting delays (Bonneau, 1997). However, excess admixtures can lead to
excessive segregation (Hattori, 1979; Uysal et al., 2012), which means that the results depend
heavily on the nature of the chemical admixture (Hajime & Masahiro, 2003), whether it is a
sulfonated polymer, polycarboxylate, or other synthetic polymer. However, several studies have
been conducted on the interaction between cement and admixtures from a physicochemical
perspective (Jolicoeur & Simard, 1998), rheology (Banfill, 2011), fresh state, mechanical
properties, and durability (S. Singh et al., 2017). The EFNARC has provided guidelines for the
design of self-compacting concrete (SCC) mixes (EFNARC, 2002, 2005).

In general, the variability of the admixture percentage, whether a water reducer or a high-range
water reducer, relative to cement in the self-compacting concrete formulation, can lead to similar
results during various fresh-state tests, which generates confusion among the available
information and an enigmatic or vague behavior. A thorough analysis of the impact of different
admixture percentages on rheological tests is essential to improve our understanding of
superplasticizers. A synthesis study on the formulation of self-compacting concrete represents an
ideal opportunity to explore and optimize the use of admixtures to improve their performance.
This study analyzed the results of various published studies on self-compacting concrete, focusing
particularly on the incorporation of fly ash and other formulations without any additives. After
conducting a rigorous literature review, our goal was to understand the impact of admixtures on
the rheology of self-compacting concrete based on the available results. We focused mainly on
rheological tests, such as the slump flow, T500 flow time, L-box, and V-funnel tests. In conclusion,
we identified future challenges and proposed a roadmap to address the key aspects of using these
results to better understand the interactions between water, cement, and admixtures.

2. Review Study Methodology

The method used in this synthesis study was the open-access PRISMA (https://www.prisma-
statement.org/, 2020)(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)




Bouabdallah, J. Build. Mater. Struct. (2025) 12: 145-169 147

protocol, which is often favored for its methodological rigor and transparency. Furthermore, this
method allows us to visualize the data in various forms using the advanced features of Excel,
which facilitates the communication and presentation of the analysis results.

The first criterion for including or excluding studies grouped in this article was the mention of the
quantities of materials used in the composition of SCC, with rheological results such as the slump
flow test (ASTM, 2005; BS EN British Standard, 2010b), T500 flow time, L-box test (BS EN British
Standard, 2010a), and V-funnel test (BS EN 12350-9:2010, 2010). These tests have proven to be
highly effective in controlling the flowability and stability of self-compacting concrete (SCC).

The second criterion focused on a single type of additive, namely fly ash, to exclude the influence
of other additives on rheological results.

The third criterion was self-compacting concrete compositions without additives. Often, the
authors have developed their own SCC formulation without admixtures based on the available
materials and specific objectives of their research. This initial formulation represents the baseline
for this study. Subsequently, these authors typically performed a partial substitution of cement
with one or two additions. For the baseline formulation, different designations such as NC
(Chinthakunta et al., 2021), control (Uysal & Tanyildizi, 2012), SO (Vilas et al., 2022), and SCCO
(Revilla-cuesta et al., 2022) were used.

Figure 1 presents several articles on self-compacting concrete, extracted from publications by the
Elsevier Publishing House. These results stem from our research, which was conducted between
2004 and 2023, and published in various scientific journals. The selection criteria were based on
researchers mentioning their formulations in their articles, as well as the results related to the
rheology of SCC, whether it contained fly ash or did not contain admixtures.
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Fig. 1. Publication trend.

Our research strategy aimed to integrate all available articles that met the defined criteria and
objectives. The goal was not to analyze all existing articles but to focus on those that shared
common points. Among these common points, all authors studied a well-defined SCC mix design,
incorporating fly ash with or without admixtures. Another common point is that these studies
present their results on rheology, including at least one of the following tests: slump flow tests
(ASTM, 2005; BS EN British Standard, 2010b) T500 flow time, L-box test, and V-funnel test (BS EN
12350-9:2010, 2010).
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This method of collecting literature data shows that there is no direct link between different
researchers, with each study being conducted independently with its own objectives and methods.
For example, some studies [53] have investigated(A. Singh et al., 2023) the incorporation of
recycled materials into self-compacting concrete, while others (Bani Ardalan et al,, 2017) have
studied the incorporation of pumice powder into self-compacting concrete. Furthermore, we
eliminated repetitions of each mix design used by the authors in multiple articles.

The test results, which are the objectives of this synthesis, represent well-defined tests according
to the standards and specifications. The results obtained by researchers on the rheology of SCC
are clear. All results were studied and verified in accordance with the international standards and
specifications established by the EFNARC (EFNARC, 2002, 2005), which represents the guide for
each self-compacting concrete mix design.

Where N, is the number of articles studied, N is the number of SCC mix designs, Nra is the number
of SCC mix designs with fly ash, Nya is the number of mix designs without admixtures, and Noa is
the number of SCC mix designs with supplementary cementitious materials (SCMs) other than fly
ash.

Elsevier publisher (Na=70 articlas) containing (N=604 SCC mix designs)
*  Journal of Constructional Steel Research (Na=1) containing (N=5).
*  Engineering Structures (Ma=1) containing (N=12).
*  Construction and Building Materials (Na=34) containing (N=300).
*  Materials Today: Proceedings (Nx=12) containing (N=105).
*  Materials and Design (Na=4) containing (N=18).
*  Cement and Concrete Composites (Na=2) containing (N=16).
*  Journal of Cleaner Production (Na=3) containing (N=32).
*  (Case Studies in Construction Materials (Na=4) containing (N=27).
* Cement and Concrete Research (Na=1) containing (N=21).
*  Procedia Engineering (Na=2) containing (N=6).
*  Journal of Building Engineering (Ms=5) containing (N=51).
*  Chemistry of Inorganic Materials {Na=1) containing (N=11)

Y b4 l

Records after deduplication Accepted SCC mix designs An SCC mix design with a
(Nua=3) (Nea=T7) (N=200) supplementary cementitious
material (SCM) other than fly ash
(Noa = 304)

v v

SCC mix design with fly ash Baseline SCC mix design
addition without fly ash additions
(Nea=149) (Nna=51)

Elsevier publisher (Na=70 articles) and (N=200 SCC mix designs).
¢  lournal of Constructional Steel Research (Na=1) the number of selected SCC mix designs (N=3).
+  Engineering Structures (Na=1) the number of selected SCC mix designs (N=6).
¢+ Construction and Building Materials (Na=34) the number of selected SCC mix designs {N=50).
*  Materials Today: Proceedings (Na=12) the number of selected SCC mix designs (N=37).
¢ Materials and Design (Na=4) the number of selected SCC mix designs (N=18).
¢  Cement and Concrete Composites (Na=2) the number of selected SCC mix designs (N=6).
¢  Journal of Cleaner Production (Na=3) the number of selected SCC mix designs (N=8).
¢ (Case Studies in Construction Materials (Na=4) the number of selected SCC mix designs (N=4).
¢+  Cement and Concrete Research (Na=1) the number of selected SCC mix designs (N=14).
*  Procedia Engineering (Nx=2) the number of selected SCC mix designs (N=6).
+  Journal of Building Engineering (Na=5) the number of selected SCC mix designs (N=8).
¢ Chemistry of Inorganic Materials (Ma=1) the number of selected SCC mix designs [N=7).

Fig. 2. Data retrieval, screening, eligibility, and inclusion sequences were used.
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3. Literature review

In this study, we analyzed 70 research articles on self-compacting concrete (SCC) that
encompassed 200 variations in SCC mix design. These articles were selected based on the
availability of fresh-state results, either partially or completely. Among the 200 studied
variations in SCC mix designs, we identified 51 formulations without any additional
admixtures, which represented the baseline formulation. The remaining 149 variations of
the SCC mix design involved varying percentages of fly ash relative to cement. However,
it is pertinent to emphasize that the representation of gravel and sand grading curves is
often omitted in the articles, for example (Elango et al., 2022; N. Li et al., 2020; Liu et al,,
2023; Vinod Kumar & Narendra Kumar, 2022). The studies that included these curves in
their analyses allowed us to verify the grading curves for detecting inert fines with
diameters less than 80 pm. It is important to note that the research conducted by (Anjos et al.,
2020; Gautam et al,, 2022; Jiang & Zhang, 2022) highlighted the presence of fines in sand.

3.1. Self-compacting concrete without fly ash

In the first part of this study, we present the literature findings in Table 1, classifying the
self-compacting concrete (SCC) mix designs in ascending order of water/cement ratio
(W/C). These mix designs, without admixtures, were subjected to various tests, including
Slump Flow, T500 flow time, V-funnel flow time, and L-box blocking ratio. Each study
indicated the superplasticizer (SP) dosage used in the mix design, expressed as a percentage of
the cement content, as well as different gravel/sand (G/S) ratios.

Table 1. Summary table of SCC rheological tests without the admixtures.

Slum T50
N° Article Ref Wle /S SP % / ﬂowp 0 V- L-Box
C C Funnel
[mm] [s]
1 | N.Liandall (N. Li etal,, 2020) 0.23 | 1.01 2.5 645 2
2 | N.Liandall. (N. Li etal,, 2020) 0.26 | 1.08 1.52 650 1
3 | P.R.Silvaand].De | (Silva & Brito,2015) | 0.27 | 0.97 1 770 9.3 0.91
Brito
4 | N.Liandall (N. Lietal, 2020) 0.28 | 1.12 1.2 655 1
5 | G.Sua-iam and B. (Sua-iam & 0.28 | 0.87 2 700 2.2 6.8 0.94
Chatveera Chatveera, 2021,
2022)
6 | P.Promsawat and (Promsawat et al,, 0.28 | 0.88 2.2 750 34 11.59 0.8
all. 2020)
7 | Madasu Durga Rao (Rao etal., 2023) 0.30 | 0.84 0.40 680 3.90 7.50 0.85
and all.
8 | F. A. Mustapha and (Mustapha et al,, 0.32 | 1.05 2.6 550 12 0.8
all. 2021)
9 | N.Liandall (N. Lietal, 2020) 0.33 | 1.15 0.80 650 1
10 | G. Erhan and all. (Erhan etal., 2015) | 0.33 | 1.00 0.60 735 3.7 9.4 0.98
11 | M. Uysal and H. (Uysal & Tanyildizi, | 0.33 | 0.90 1.60 690 4.25 14.44 0.82
Tanyildizi 2012)
12 | R.Vilas and all. (Vilas et al,, 2022) 0.33 | 0.79 0.90 721 3.12 7.31 091
13 | R.Choudhary and (Choudhary et al., 0.33 | 0.74 1.40 710 2.7 10.4 0.966
all. 2020)
14 | T.Zhi and al. (Zhi etal,, 2020) 0.33 | 0.64 1.65 665 5.04 15
15 | Ram Vilas Meena (Vilas Meena et al,, 0.33 | 0.82 1.12 705 4.02 8.90 0.85
and all. 2023)
16 | N.]Jahan and all. (Jahan et al,, 2023) 0.34 | 0.86 1.11 750 2.35 4.8 0.935
17 | A.F.Bingél and L. (Bingodl & Tohumcu, | 0.35 | 0.72 1.15 630 6.13 6.08 0.84
Tohumcu 2013)
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18 | J. G. Jawahar and (Jawahar et al,, 0.35 | 0.72 1.15 630 6.13 6.08 0.84
all. 2013)
19 | E. Glineyisi and all. (Giineyisi et al., 0.35 | 1.33 1.34 700 3.8 115 0.62
2012)
20 | N.Puthipad and all. (Puthipad et al,, 0.35 | 0.86 1.90 640 10.8
2016)
21 | N.Puthipad and all. (Puthipad et al,, 0.35 | 0.78 2.81 605 35.6
2016)
22 | H.Zhao and all. (Zhao etal., 2015) 0.35 | 1.56 0.24 700 0.92
23 | M. Abed and all. (Abed etal, 2022) 0.35 | 1.20 0.3 698 6
24 | C.Dong and all. (Dong et al,, 2022) 0.35 | 0.97 1.01 755 4
25 | L. Gautam and all. (Gautam et al,, 2022) | 0.36 | 0.71 0.9 700 4.15 8.32 0.96
26 | S.Altoubat and all. (Altoubat et al., 0.36 | 0.67 0.88 620 10 0.7
2017)
27 | A.Jain and all. (Jain, Choudhary,et | 0.37 | 0.72 0.37 745 2.25 9.05 0.88
al,, 2022a)
28 | R.Faisal and all. (Faisal et al., 2022) 0.37 | 1.08 0.81 678 4.5 7.5 0.85
29 | A.Jain and all. (Jain et al., 2020) 0.37 | 0.94 1.35 700 4 8 0.94
30 | Abhishek Jain and (Jain, Chaudhary,et | 0.37 | 0.72 0.48 750
all. al, 2022)
31 | N, Karthiga and all. (Karthiga @ 0.37 | 0.94 1.35 735 2.50 6.50 0.93
Shenbagam et al,,
2023)
32 | R.Bani Ardalan (Bani Ardalan etal, | 0.38 | 0.54 0.45 650 5
and all. 2017)
33 | R. Chinthakunta (Chinthakuntaetal, | 0.38 | 1.22 0.45 550
and all. 2021)
34 | M. Dammaandall. | (Dammaetal, 2021) | 0.38 | 1.22 0.45 550
35 | N.PathakandR. (Pathak & Siddique, | 0.38 | 1.06 2 620; 627
Siddique 2012b), (Pathak &
Siddique, 2012a)
36 | P.Ricardo and all. (Ricardo etal.,, 2019) | 0.38 | 1.05 1.9 705 6 19 0.87
37 | 0.Boukendakdji (Boukendakdji etal.,, | 0.40 | 0.97 1.60 630 1.25 7
and all. 2012)
38 | 0.Boukendakdji (Boukendakdji etal.,, | 0.40 | 0.97 1.80 500 1.4 10
and all. 2012)
39 | M. Sharbafand all. | (Sharbafetal, 2022) | 0.40 | 0.75 0.55 673 2.6 0.78
40 | M. A.S. Anjos and (Anjos et al,, 2020) 0.40 | 1.01 1.48 625 1.67 4.6 0.75
all.
41 | A.Zolghadri and (Zolghadri et al,, 042 | 0.44 0.8 650 1.8 2
all. 2022)
47 | B.Selvaraniand V. (Selvarani & Preethi, | 0.43 | 0.72 1.20 720 3.5 8.5 0.88
Preethi 2021)
43 | A.Singh and all. (A. Singh etal, 2022, | 0.43 | 0.79 0.50 580 5.5 12.5 0.9
2023)
44 | E. Glineyisi and M. (Glineyisi & Gesog, 0.44 | 1.05 0.40 670 1.0 3.2 0.706
Gesog 2009)
45 | M. R. Md Zain and (Md Zain et al,, 0.45 | 0.85 0.63 630 4.0 0.98
all. 2021)
46 | Barbara Klemczak (Klemczak et al., 045 | 141 1.28 680
and all. 2023)
47 | A.Zolghadri and (Zolghadri et al,, 0.46 | 0.44 0.75 630 0.8 2.5
all. 2022)
48 | M. Monaliza and (Monaliza et al,, 046 | 1.12 0.2 670 1.96 4.38 09
all. 2022)
49 | H.A. A.Diniz and (Diniz et al,, 2022) 0.50 | 1.00 0.61 785 4.0 14
all.
50 | G.Fahim and all. (Fahim etal, 2021) | 0.52 | 0.90 0.96 665 3.75 0.84
51 | M. A.S. Anjos and (Anjos et al,, 2020) 0.60 | 0.82 0.90 500 4.2

all.
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3.2. Self-compacting concrete with fly ash

In the second part of the study, we present the literature findings by classifying the self-
compacting concrete (SCC) mix designs in ascending order of the Equivalent
Water/Binder (W/B) ratio. Here, B refers to the total amount of powder material,
including cement and supplementary cementitious materials (SCMs) such as fly ash.
These mix designs were subjected to various tests, including Slump Flow, T500 flow time,
V-funnel flow time, and L-box blocking ratio. Each study indicated the superplasticizer
(SP) dosage used in the mix design, expressed as a percentage of the equivalent binder

content, and various gravel/sand (G/S) ratios.

Table 2. Summary table of SCC rheological tests with the admixtures.

Slump
N° Article Ref W/B w/C G/S SP %/ SP % flow T500 v- L-Box
B /C [s] Funnel
[mm]
1 S. A. Kristiawan (Kristiawan & Aditya, 0.18 0.52 1 1.14 3.26 760 3.27 16 0.85
and M. T. M. 2015), (Kristiawan &
Aditya Agung P Nugroho,
2017)
2 S. A. Kristiawan (Kristiawan & Aditya, 0.22 0.49 1 1.14 2.53 740 3.57 22.98 0.9
and M. T. M. 2015), (Kristiawan &
Aditya Agung P Nugroho,
2017)
3 S. A. Kristiawan (Kristiawan & Aditya, 0.22 0.34 1 1.14 1.75 745 3.7 24.73 0.73
and Agung P 2015), (Kristiawan &
Nugroho Agung P Nugroho,
2017)
4 M. (Harihanandh et al,, 0.23 0.28 0.86 1.87 2.25 720 3 9 0.9
Harihanandh 2021)
and all.
5 M. (Harihanandh et al,, 0.23 0.28 0.86 1.87 2.25 690 4 9 0.9
Harihanandh 2021)
and all.
6 M. (Harihanandh et al., 0.24 0.29 0.86 1.87 2.25 690 3 8 0.8
Harihanandh 2021)
and all.
7 M. (Harihanandh et al,, 0.25 0.30 0.85 1.87 2.25 720 3 10 0.9
Harihanandh 2021)
and all.
8 A.Meena and (Meena et al,, 2023) 0.25 0.49 0.80 0.85 1.70 730 3.8 8.3 0.95
all.
9 Y. Huang and (Huang et al,, 2022) 0.27 0.39 1.03 1.02 1.45 660 1
all.
10 M. (Harihanandh et al,, 0.27 0.32 0.86 1.87 2.25 750 4 11 0.8
Harihanandh 2021)
and all.
11 N. Li and all. (N. Lietal, 2020) 0.28 0.38 1.02 0.81 1.10 600 1
12 G. Vinod (Vinod Kumar & 0.28 0.31 1.08 0.80 0.80 780 7 0.92
Kumar and B. Narendra Kumar,
Narendra 2022)
Kumar
13 Z. Ge and all. (Ge etal,, 2021) 0.28 0.47 1.06 0.80 1.33 745.2 3.75 0.82
14 P.R. Silvaand J. (Silva & Brito, 2015) 0.28 0.36 0.95 0.76 0.99 680 7.3 0.84
De Brito
15 M. (Harihanandh et al., 0.29 0.35 0.87 1.88 2.25 720 3 10 0.9
Harihanandh 2021)
and all.
16 P. Dinakar and (Dinakar et al., 2013) 0.30 0.33 1.08 1.20 1.33 620 6 28.19 0.77
all.
17 P. Dinakar and (Dinakar etal., 2013) 0.30 0.43 1.09 1.30 1.86 685 5 16 0.8
all.
18 P. Dinakar and (Dinakar et al., 2013) 0.30 0.60 1.09 1.30 2.60 705 5 20.39 0.93
all.
19 P. Dinakar and (Dinakar et al., 2013) 0.30 1.00 1.08 1.60 5.33 670 7 28.16 0.83
all.
20 M. S. Ashtiani (Ashtiani et al.,, 2013) 0.30 0.43 1.01 0.65 0.65 750 4.2 8 0.92
and all.
21 P.R. Silva and J. (Silva & Brito, 2015) 0.30 0.62 0.94 0.66 1.38 670 8.4 0.81
De Brito
22 P.R.Silvaand J. (Silva & Brito, 2015) 0.30 0.82 0.94 0.51 1.38 660 8.6 0.79
De Brito
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23 Madasu Durga (Rao etal,, 2023) 0.30 0.32 0.84 0.38 0.40 670 4 7.92 0.85
Rao and all.

24 Madasu Durga (Rao etal,, 2023) 0.30 0.33 0.84 0.36 0.40 650 3.6 8.10 0.87
Rao and all.

25 Madasu Durga (Rao etal,, 2023) 0.30 0.35 0.84 0.34 0.40 665 4.5 6.84 0.89
Rao and all.

26 Madasu Durga (Rao etal,, 2023) 0.30 0.38 0.84 0.32 0.40 672.5 3 4.30 0.90
Rao and all.

27 Madasu Durga (Rao etal,, 2023) 0.30 0.40 0.84 0.30 0.40 680 4.4 4.82 091
Rao and all.

28 Madasu Durga (Rao etal,, 2023) 0.30 0.43 0.84 0.28 0.40 690 3.2 5.50 0.93
Rao and all.

29 K. S. Elango (Elango et al,, 2022) 0.31 0.40 0.94 0.70 0.7 695 9.7 1.1
and all.

30 B. Sukumar (Sukumar, 2008) 0.31 0.34 0.92 0.64 0.7 742 2 6 0.95

31 T. Zhi and all. (Zhi et al,, 2020) 0.31 0.44 0.64 1.65 2.36 700 4.38 14

32 T. Zhi and all. (Zhi et al,, 2020) 0.31 0.52 0.64 1.65 2.75 710 4.35 13

33 T. Zhi and all. (Zhi et al,, 2020) 0.31 0.62 0.64 1.65 3.30 730 1.82 13

34 Y. Huang and (Huang et al,, 2022) 0.32 0.46 1.03 0.77 1.1 670 1
all.

35 Y. Jiang and S. (Jiang & Zhang, 2022) 0.32 0.45 1.03 1.55 2.21 690 4.1
Zhang

36 F. A. Mustapha (Mustapha et al., 0.32 0.43 1.14 2.00 2.00 640 11.6 0.84
and all. 2021)

37 B. Sukumar (Sukumar, 2008) 0.32 0.44 0.92 0.37 0.5 773 1.5 5 0.96

38 B. Sukumar (Sukumar, 2008) 0.32 0.38 0.92 0.50 0.6 766 1.5 6 0.95

39 N. Puthipad (Puthipad et al,, 2016) 0.32 0.54 0.78 0.96 0.96 610 17
and all.

40 N. Puthipad (Puthipad et al., 2016) 0.32 0.80 0.78 0.80 0.80 600 11.1
and all.

41 R. H. Faraj and (Faraj et al,, 2021) 0.32 0.40 1.00 1.35 1.68 750 3.8 19 0.89
all.

42 M. Uysal and H. (Uysal & Tanyildizi, 0.33 0.39 0.88 1.55 1.83 710 313 9.34 0.908
Tanyildizi 2012)

43 M. Uysal and H. (Uysal & Tanyildizi, 0.33 0.44 0.85 1.50 2.00 740 2.22 11.58 0.924
Tanyildizi 2012)

44 M. Uysal and H. (Uysal & Tanyildizi, 0.33 0.51 0.85 1.45 2.24 740 2.18 16.97 0.905
Tanyildizi 2012)

45 M. (Harihanandh et al., 0.33 0.40 0.86 1.88 2.26 700 3 9 0.9
Harihanandh 2021)
and all.

46 B. Sukumar (Sukumar, 2008) 0.33 0.54 0.92 0.24 0.4 786 1 5 0.99

47 G. Erhan and (Erhan et al,, 2015) 0.33 0.44 1.00 0.50 0.67 760 2.7 8.7 1
all.

48 G. Erhan and (Erhan et al,, 2015) 0.33 0.66 1.00 0.40 0.80 770 2.1 8.1 1
all.

49 G. Erhan and (Erhan et al,, 2015) 0.33 1.32 1.00 0.30 1.20 790 1.4 7.3 1
all.

50 N. Puthipad (Puthipad et al,, 2016, 0.33 0.55 0.86 0.82 0.82 685 6
and all. 2017)

51 N. Puthipad (Puthipad et al., 2016, 0.33 0.83 0.86 0.65 0.65 620 11.1
and all. 2017)

52 N. Puthipad (Puthipad et al,, 2016, 0.33 0.50 0.86 0.80 0.8 630 9.83
and all. 2017)

53 M. (Nuruzzaman et al., 0.34 0.44 0.77 1.74 2.26 785 6 0.98
Nuruzzaman 2022)
and all.

54 B. Sukumar (Sukumar, 2008) 0.34 0.71 0.92 0.19 0.4 793 1 4 1

55 S. Yang and all. (Yang etal,, 2021) 0.34 0.45 1.00 0.80 1.08 560 7.01

56 S. Yang and all. (Yang et al,, 2021) 0.34 0.45 1.00 0.90 1.21 640 6.3

57 S. Yang and all. (Yang et al,, 2021) 0.34 0.45 1.00 1.00 1.35 700 5.35

58 M. A. S. Anjos (Anjos et al,, 2020) 0.34 0.85 1.01 1.80 4.50 700 1.85 4.8 0.86
and all.

59 N. Li and all. (N. Lietal,, 2020) 0.35 0.56 1.10 0.25 041 670 1

60 A. F. Bingél and (Bingol & Tohumcu, 0.35 0.47 0.72 1.50 2.00 660 7.7 6.95 0.85
I. Tohumcu 2013)

61 A.F.Bingol and (Bing6l & Tohumcu, 0.35 0.58 0.72 1.50 2.50 680 6.8 6.2 0.88
I. Tohumcu 2013)

62 A.F.Bingol and (Bingdl & Tohumcu, 0.35 0.78 0.72 1.50 3.33 700 7.6
I. Tohumcu 2013)

63 J. G. Jawahar (Jawahar et al., 2013) 0.35 0.47 0.72 1.50 2.00 660 7.7 6.95 0.85
and all.

64 J. G. Jawahar (Jawahar et al., 2013) 0.35 0.58 0.72 1.50 2.50 680 6.8 6.3 0.88
and all.

65 J. G. Jawahar (Jawahar et al., 2013) 0.35 0.78 0.72 1.50 3.33 700 7.6 7 091
and all.

66 E. Giineyisi and (Giineyisi et al., 2012) 0.35 0.50 1.33 0.87 1.24 720 2.9 12 0.92
all.
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67 E. Giineyisi and (Glineyisi et al.,, 2019) 0.35 0.47 1.00 1.00 1.33 700 3.7 11.5 0.94
all.
68 G. Vinod (Vinod Kumar & 0.35 0.44 1.56 0.19 0.24 725 0.95
Kumar Narendra Kumar,
2022)
69 G. Vinod (Vinod Kumar & 0.35 0.50 1.56 0.17 0.24 750 0.96
Kumar Narendra Kumar,
2022)
70 G. Vinod (Vinod Kumar & 0.35 0.58 1.56 0.14 0.24 760 0.98
Kumar Narendra Kumar,
2022)
71 M. Abed and M. (Abed et al,, 2022) 0.35 0.41 1.20 0.60 0.4 680 5.8
Ju
72 M. Abed and M. (Abed et al,, 2022) 0.35 0.50 1.20 0.80 0.6 675 6.4
Ju
73 M. A. S. Anjos (Anjos et al,, 2020) 0.35 0.88 0.89 3.10 7.75 750 1.83 5.85 0.94
and all.
74 J. G. Jawahar (Jawahar et al,, 2013) 0.36 0.55 0.85 0.90 1.39 696 3.12 6.23 0.81
and all.
75 S. Altoubat and (Altoubat et al., 2017) 0.36 0.45 0.67 1.44 1.81 720 5 0.85
all.
76 S. Altoubat and (Altoubat et al., 2017) 0.36 0.55 0.68 1.22 1.88 600 6 0.8
all.
77 S. Altoubat and (Altoubat et al., 2017) 0.36 0.72 0.70 1.22 2.44 680 5 0.95
all.
78 Abhishek Jain (Jain, Chaudhary, et 0.37 0.53 0.72 0.15 0.21 750
al, 2022)
79 N, Karthiga (Karthiga @ 0.37 0.46 0.94 0.80 1.00 730 3.30 8.50 091
Shenbagam et al.,
2023)
80 N, Karthiga (Karthiga @ 0.37 0.46 1.18 0.72 0.90 645 5.50 10.80 0.81
Shenbagam et al.,
2023)
81 N, Karthiga (Karthiga @ 0.37 0.46 1.57 0.88 1.10 575 6.30 12.40 0.72
Shenbagam et al.,
2023)
82 N, Karthiga (Karthiga @ 0.37 0.46 2.35 1.20 1.50 555 7.20 12.10 0.65
Shenbagam et al.,
2023)
83 N, Karthiga (Karthiga @ 0.37 0.46 4.69 1.52 1.90 540 7.40 11.80 0.53
Shenbagam et al.,
2023)
84 N, Karthiga (Karthiga @ 0.37 0.53 0.94 0.56 0.80 720 3.50 8.90 0.88
Shenbagam et al.,
2023)
85 N, Karthiga (Karthiga @ 0.37 0.53 1.18 0.42 0.60 595 5.40 11.40 0.76
Shenbagam et al.,
2023)
86 N, Karthiga (Karthiga @ 0.37 0.53 1.57 0.56 0.80 565 6.40 12.90 0.68
Shenbagam et al.,
2023)
87 N, Karthiga (Karthiga @ 0.37 0.53 2.35 0.84 1.20 550 6.90 12.70 0.61
Shenbagam et al.,
2023)
88 N, Karthiga (Karthiga @ 0.37 0.53 4.69 1.19 1.70 540 7.10 12.30 0.50
Shenbagam et al.,
2023)
89 A.Jain and all. (Jain, Choudhary, et 0.37 0.53 0.72 0.15 0.21 770 1.54 591 0.98
al, 2022b)
90 A.Jain and all. (Jain et al., 2020) 0.37 0.46 0.94 0.76 0.95 675 1 11 0.94
91 A.Jain and all. (Jain et al,, 2020) 0.37 0.53 0.94 0.52 0.75 685 0.7 16 0.97
92 S.Yang and all. (Yang etal, 2021) 0.37 0.50 1.00 0.80 1.08 700 4.19
93 S.Yang and all. (Yang etal,, 2021) 0.37 0.50 1.00 0.90 1.21 715 4.3
94 S. Yang and all. (Yang et al,, 2021) 0.37 0.50 1.00 1.00 1.35 718 4.7
95 Y. Huang and (Huang et al,, 2022) 0.38 0.54 1.03 0.42 0.60 672 1
all.
96 R. Bani Ardalan (Bani Ardalan et al., 0.38 0.42 0.56 0.43 0.43 650 5
etall. 2017)
97 R. Bani Ardalan (Bani Ardalan et al., 0.38 0.48 0.56 0.40 0.40 650 5
etall. 2017)
98 R. Bani Ardalan (Bani Ardalan et al., 0.38 0.55 0.56 0.38 0.38 650 7
etall. 2017)
99 R. Bani Ardalan (Bani Ardalan et al., 0.38 0.64 0.55 0.35 0.35 650 7
etall. 2017)
100 R. Bani Ardalan (Bani Ardalan et al., 0.38 0.76 0.56 0.25 0.25 650 8
etall. 2017)
101 S. Barbhuiya (Barbhuiya, 2011) 0.38 0.76 0.67 0.30 0.59 645 5.9 0.76
102 N. Pathak and (Pathak & Siddique, 0.38 0.40 1.06 1.72 1.82 634
R. Siddique 2012b)
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103 N. Pathak and (Pathak & Siddique, 0.40 0.43 1.02 1.67 1.8 652
R. Siddique 2012b)
104 M. Sharbaf and (Sharbaf et al., 2022) 0.40 0.47 0.75 0.49 0.12 667 2.2 091 12
all.
105 M. Sharbaf and (Sharbaf et al., 2022) 0.40 0.52 0.75 0.42 0.11 673 2 0.93 12
all.
106 M. Sharbaf and (Sharbaf et al., 2022) 0.40 0.57 0.75 0.40 0.12 673 1.9 0.93 12
all.
107 M. Sharbaf and (Sharbaf et al., 2022) 0.40 0.64 0.75 0.35 0.12 641 1.8 091 25
all.
108 R. Siddique and (Siddique & Kaur, 0.41 0.46 0.65 1.20 1.2 720 7 0.98
G. Kaur 2016)
109 R. Siddique (Siddique, 2011) 0.41 0.49 0.65 1.95 1.95 673.3 4.5 7.5 0.89
110 P. Ricardo and (Ricardo et al.,, 2019) 0.41 0.63 1.09 0.65 1.9 700 3 9 0.89
all.
111 P. Ricardo and (Ricardo et al.,, 2019) 0.41 0.76 1.08 0.43 1.2 675 3 13 0.96
all.
112 S. Yang and all. (Yangetal, 2021) 0.41 0.55 1.00 0.80 1.08 730 4.22
113 S. Yang and all. (Yang et al,, 2021) 0.41 0.55 1.00 0.90 1.21 710 4.63
114 S. Yang and all. (Yang et al,, 2021) 0.41 0.55 1.00 1.00 1.35 700 4.46
115 R. Siddique (Siddique, 2011) 0.42 0.50 0.65 2.00 2 673 4.5 7.5 0.89
116 E. M. Mervin et (Mervin et al,, 2021) 0.42 0.61 0.83 0.17 0.25 660 29 10.8
all.
117 R. Siddique (Siddique, 2013) 0.42 0.52 0.65 2.00 2 690 3 4.5 0.95
118 R. Siddique (Siddique, 2013) 0.42 0.56 0.65 1.80 1.8 603.3 4.4 5.2 0.85
119 N. Pathak (Pathak & Siddique, 0.42 0.46 1.00 1.56 1.72 678
2012b)
120 P. Ricardo and (Ricardo et al., 2019) 0.42 0.63 1.10 0.69 2 685 5 14 0.92
all.
121 P. Ricardo and (Ricardo et al.,, 2019) 0.42 0.63 1.05 0.40 1.1 698 2 10 0.89
all.
122 P. Ricardo and (Ricardo et al., 2019) 0.42 0.95 1.10 0.42 1.2 695 3 14 0.9
all.
123 A. Singh et all. (A. Singh et al., 2022) 0.43 0.45 0.79 0.80 0.84 600 53 12.3 0.89
124 A. Singh et all. (A. Singh et al,, 2022) 0.43 0.48 0.79 0.80 0.89 625 5 12.2 0.85
125 A. Singh et all. (A. Singh et al, 2022) 0.43 0.51 0.79 0.80 0.94 630 4.7 12.1 0.84
126 A. Singh et all. (A. Singh et al., 2022), 0.43 0.54 0.79 0.80 1.00 645 ; 4.1. 12 0.83
(A. Singh et al,, 2023) 648 7.1
127 A. Singh et all. (A. Singh et al,, 2022) 0.43 0.57 0.79 0.80 1.07 665 4 11.3 0.82
128 A. Singh et all. (A. Singh et al,, 2022) 0.43 0.61 0.79 0.80 1.14 670 3.4 11.1 0.81
129 A. Singh et all. (A. Singh et al., 2022) 0.43 0.66 0.79 0.80 1.23 705 3 11 0.8
130 R. Siddique (Siddique, 2011) 0.43 0.61 0.65 1.80 1.8 673.3 3 6.1 0.95
131 R. Siddique (Siddique, 2011) 0.44 0.68 0.65 1.80 1.8 633.3 4 10 0.92
132 E. Giineyisi and (Giineyisi & Gesog, 0.44 0.55 1.05 0.71 0.89 675 2 10.4 0.706
M. Gesog 2009)
133 E. Giineyisi and (Guneyisi & Gesog, 0.44 0.73 1.05 0.64 1.07 730 2 6 0.8
M. Gesog 2009)
134 E. Giineyisi and (Giineyisi & Gesog, 0.44 1.10 1.05 0.67 1.67 720 1 4 0.95
M. Gesog 2009)
135 M. Sonebi (Sonebi, 2004) 0.45 0.92 1.06 0.8 1.64 555 4.87 0.2
136 Barbara (Klemczak et al., 0.54 1.13 1.41 1.55 3.21 710
Klemczak 2023)
137 M. Sonebi (Sonebi, 2004) 0.55 1.12 1.75 0.5 1.02 705 2.88 0.58
138 M. Sonebi (Sonebi, 2004) 0.55 0.90 1.13 0.5 0.82 625 2.13 0.43
139 M. Sonebi (Sonebi, 2004) 0.55 0.90 1.13 0.5 0.82 605 1.95 0.31
140 M. Sonebi (Sonebi, 2004) 0.55 0.90 1.13 0.5 0.82 625 2.33 0.45
141 M. Sonebi (Sonebi, 2004) 0.55 0.90 1.13 0.5 0.82 605 2.27 0.32
142 M. Sonebi (Sonebi, 2004) 0.55 0.83 1.41 0.5 0.75 697 4.18 0.89
143 M. Sonebi (Sonebi, 2004) 0.55 0.90 1.13 0.5 0.82 600 2.19 0.41
144 M. Sonebi (Sonebi, 2004) 0.55 0.90 1.12 1 1.64 790 5.43 0.89
145 M. Sonebi (Sonebi, 2004) 0.65 0.96 0.92 0.8 1.18 575 3.03 0.45
146 M. Sonebi (Sonebi, 2004) 0.65 1.14 2.27 0.8 1.41 785 1.31 0.89
147 M. Sonebi (Sonebi, 2004) 0.65 0.87 1.18 0.2 0.27 623 3.89 0.7
148 M. Sonebi (Sonebi, 2004) 0.65 1.33 1.49 0.2 0.41 737 2.69 0.67
149 M. Sonebi (Sonebi, 2004) 0.72 1.18 1.48 0.5 0.82 880 2.53 0.97

4. Analysis of results

The admixture dosage, typically ranging from 0.1% to 3% of the cement content, can vary by up
to 7.75%, according to other studies (Anjos etal., 2020; Dinakar et al., 2013; Klemczak et al., 2023).
The specifications regarding the nature of admixtures are often neglected and have not been
consistently reported in the literature. However, the performance results were highly dependent
on the chemical admixtures (Hajime & Masahiro, 2003).




Bouabdallah, J. Build. Mater. Struct. (2025) 12: 145-169 155

Figure 3 illustrates the results of various tests in three dimensions: the slump flow test, T500 flow
time, L-box blocking ratio, and V-funnel flow time, as a function of variations in water and
superplasticizer dosage with and without fly ash.

The analysis of results from various researchers, as illustrated in Figure 3, reveals a notable
scatter in the experimental data. This indicates that Self-Compacting Concrete (SCC) formulations
with or without fly ash exhibit variable responses to different combinations of superplasticizers
and water content. While the substitution of cement with fly ash did not significantly alter the
rheological behavior of the concrete across the various tests shown in Figure 3, it facilitated cost
reductions and enhanced granular packing density. At first glance, this dispersion of results
obscures a clear interpretation of the admixture’s impact on SCC performance. However, these
observations suggest that the coefficient associated with the admixture plays a critical role in
governing the rheological behavior of the concrete.

Moreover, the impact of water on concrete appears to follow a linear relationship with its
rheology: an increase in water content leads to an increase in SCC fluidity. However, this is not
necessarily the case for admixture. According to the literature, a small or large admixture dosage
can produce a similar rheology, as shown in Figure 3.
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Fig. 3. Rheological test results as a function of water and superplasticizer with and without fly ash.

Figure 4 presents the impact of water and admixture dosage on the rheological properties of self-
compacting concrete (SCC), as per the EFNARC specifications (EFNARC, 2002, 2005). This was
demonstrated through various tests, including the slump flow test, T500 flow time, L-box blocking
ratio, and V-funnel flow time. This depiction facilitates the identification of the most frequently
studied classes based on the results obtained by the researchers. In the slump flow test, Figure 4
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indicates that five classes were distinguished according to the EFNARC criteria (EFNARC, 2002,
2005), with 95.65% of the data points falling within classes SF1, SF2, and SF3. Specifically, class
SF2, which has been extensively studied by various researchers, comprises 59.90% of the data
points, whereas SF1 and SF3 account for 27.05% and 8.70%, respectively, in accordance with the
EFNARC criteria (EFNARC, 2002, 2005). Class SF3 has been less explored by researchers. The
unclassified results (N-C), with a slump flow exceeding class SF3, constituted 0.48%, whereas
those below class SF1 represented 3.86%. In the T500 test, two classes were identified based on
the EFNARC criteria (EFNARC, 2002, 2005). The findings revealed that 24.82% were classified as
class VS1 for a flow time of less than or equal to 2 s. Conversely, class VS2, with results exceeding
2 s, accounted for 75.18% of the observations in this synthesis, making it the most studied class.
In the V-funnel test, unclassified results (N-C) with a flow time exceeding 25 s, according to the
EFNARC criteria (EFNARC, 2002, 2005), represented 1.84% of the observations. In contrast,
60.74% of the observations fell within class VF2, with a flow time between 9 and 25 s, whereas
37.42% fell within class VF1, with a flow time of less than or equal to 8 s, making it the most
studied class by researchers. Regarding the L-box test, 24.83% of the observations were not
classified according to the EFNARC criteria (EFNARC, 2002, 2005), indicating an H1/H2 ratio of

less than 0.80. In contrast, 75.17% of the observations were classified as PA1 or PA2 based on the
number of bars.
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Fig. 4. Different tests were performed as a function of water and superplasticizer according to the EFNARC
(EFNARGC, 2002, 2005) specifications.

Figure 5 shows the minimum and maximum outcomes of various experimental tests, including the
slump flow test, T500 flow time, L-box blocking ratio, and V-funnel flow time, as a function of the
admixture dosage, expressed in kg/m?, based on literature data.
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The admixture dosages were categorized into intervals with a step of 1, denoted as JA-B], where
B > A and the value of A was excluded from the interval. The difference between B and A
represents the admixture dosage (kg/m?). The gap between the maximum and minimum values
for the different tests generally remained stable, albeit notably.

This stability suggests consistency in the results, while highlighting significant variations
attributable to the self-compacting concrete (SCC) mix design parameters, such as the
water/cement ratio, superplasticizer dosage, and aggregate grading. For the slump flow test, the
results ranged between 700 and 800 mm, with a positive peak in the ]2-3] interval at 870 mm and
a negative peak in the ]15-16] interval at 560 mm. Furthermore, the maximum values exhibited
stable behavior compared to the minimum values for different admixture dosages. Regarding the
L-box test, a similar behavior to the slump flow test was observed, except for the changing values,
where H1/H2 varied between 0.8 and 1, with a peak exceeding 1 in the ]5-6] interval.

In contrast, the T500 and V-funnel tests, which were employed to determine viscosity,
demonstrated behavior different from that of the previous tests. They exhibited a viscous
relationship with nonlinear behavior characterized by multiple peaks, indicating that the
admixture significantly influenced the rheological behavior of the concrete.
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Fig. 5. Evolution of rheological test results as a function of admixture dosage (kg/m3) - Analysis of maximum
and minimum deviations.

Figure 6 illustrates the distribution of superplasticizer dosages (%) relative to cement based on
their frequency of use by different researchers. These data, expressed as a percentage (%), were
analyzed using Slump Flow, T500 flow time, V-funnel flow time, and L-box blocking ratio tests.
The analysis of the curves highlighted three distinct peaks corresponding to the most commonly
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adopted dosages in the analysis of self-compacting concrete (SCC) rheology. A similar trend was
observed for the four tests.

Three significant peaks in admixture percentage were noted, representing the most frequent
dosages in the literature. The first peak was in the ]0.75-1.00%] interval, with values of 15.45%
(Slump Flow), 13.38% (T500 flow time), 29% (V-funnel flow time), and 17.24% (L-box blocking
ratio). These results indicate the stabilization of the rheological properties of concrete. The second
peak appeared in the ]1.00-1.25%] interval, with values of 13.04% (Slump Flow), 12.67% (T500
flow time), 23% (V-funnel flow time), and 11.72% (L-box blocking ratio), reflecting an optimal
balance between mixing fluidity and stability. Finally, the third peak, located in the ]1.75%-
2.00%] interval, showed a slight decrease in values with 12.56% (Slump Flow), 13.38% (T500
flow time), 19% (V-funnel flow time), and 13.10% (L-box blocking ratio), indicating a saturation
effect where excess admixture no longer significantly improved the mix rheology.

Beyond this third peak, a progressive decrease was observed until the ]3.00-3.25%] interval,
followed by a slight increase in the ]3.25-3.50%] interval, with values of 2.41% (Slump Flow),
3.52% (T500 flow time), 4% (V-funnel flow time), and 2.75% (L-box blocking ratio). This peak is
associated with an increased risk of concrete segregation.

The analysis in Figure 6 highlights the importance of an optimized superplasticizer dosage,
allowing for a balance between fluidity, stability, and flowability. Such control is essential to
ensure the optimal placement of SCC adapted to the specific requirements of the intended
applications.
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Fig. 6. Frequency of tests conducted by researchers [%] as a function of admixture dosage [%] relative to the
cement.

Figure 7 presents the distribution of superplasticizer dosages (kg/m?®) as a function of their
frequency of use by different researchers, expressed as a percentage (%), for various tests,
including Slump Flow, T500 flow time, V-funnel flow time, and L-box blocking ratio. The results
showed a similar trend for these four tests, with three distinct peaks representing the dosage
ranges most commonly used by researchers, reflecting the direct influence of superplasticizer on
the rheological properties of self-compacting concrete (SCC).

The first peak, observed in the ]2-3] kg/m? interval, indicates that this dosage is among the most
used, with variations of 15.46%, 11.35 %, 15.95 %, and 16.55% for Slump Flow, T500 flow time,
V-funnel flow time, and 16.55% for L-box blocking ratio, respectively. This choice reflected a
significant improvement in the fluidity and flowability of the mixture.

The second peak, located in the ]3-4] kg/m? interval, represents another dosage range frequently
employed by researchers, with percentages of 14.01%, 16.31%, 16.56%, and 14.48% for Slump
Flow, T500 flow time, V-funnel flow time, and L-box blocking ratio, respectively. This range
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corresponds to further optimization of the rheological performance before the onset of potential
instability.

The third peak, identified in the ]7-8] kg/m? interval, indicates another concentration of studies
using this dosage, with variations of 12.08%, 17.73 %, 6.75 %, and 15.17% for Slump Flow, T500
flow time, V-funnel flow time, and 15.17% for L-box blocking ratio, respectively. This peak
suggests a progressive saturation of concrete with superplasticizer, reducing its effectiveness.

The correlation between the Slump Flow and V-funnel flow time tests highlights the relationship
between the fluidity and viscosity of the mix, whereas the similarities between the T500 flow time
and L-box blocking ratio suggest an interdependence between stability and flowability. These
observations underscore the importance of determining an optimal dosage to ensure a balance
between fluidity, stability, and workability while minimizing the risks of segregation or poor
concrete compactness.
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Fig. 7. Frequency of tests conducted by researchers [%] as a function of admixture dosage [kg/m?].

Figure 8 shows the water content as a function of the superplasticizer dosage, expressed in kg/m?,
and the data points are color-coded according to the EFNARC specifications and criteria (EFNARC,
2002, 2005). The results from different authors show significant variations in rheological
properties, despite the use of identical water and admixture dosages. This suggests that each
admixture has its own activity index, determined by its specific chemical composition and solid
content, which represents the amount of raw material diluted in water.

Thus, assuming that there is an equivalent water content for different combinations of water and
admixture dosages, similar rheological results are obtained according to Equation 1. The
equivalent water content was calculated using the following formula:

Wequivalent = (K X Ag)+W (1

Where W is the water content used in the concrete (kg/m?), The coefficient K, which is specific to
each admixture (superplasticizer), depends on several parameters: its molecular structure, its
solid content, and the chemical and physical interactions occurring between the cement and the
admixture molecules. Ad represents the dosage of the admixture incorporated into the concrete,
expressed in (kg/m?).
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Fig. 8. Water content versus superplasticizer dosage for different tests.

Equation 1 represents the classical equation for calculating the admixture dosage in kg/m? as a
function of the cement dosage in kg/m?* and admixture percentage.

Admixture manufacturers generally indicate the recommended dosage on the product data sheet.
Adhering to this dosage is important for obtaining adequate results. Furthermore, the admixture
dosage may vary depending on concrete characteristics, such as cement composition, aggregate
grading, and water content.

The admixture weight, expressed in kilograms per cubic meter, was calculated as a percentage
relative to the equivalent binder weight, also in kilograms per cubic meter.

SP[kg/m3] = C X SP[%)] (2)

Where C represents the cement dosage [kg/m?], SP is the percentage [%] mentioned on the data
sheet, generally between 1 and 3% of the cement dosage, and Ad is the admixture dosage [kg/m?].

In the literature, admixture dosage is mentioned either as a percentage [%] or in kilograms [kg].
Using Equation 2, we calculated the admixture dosage in kg/m? from the percentage cited by the
author as a function of the cement or powder dosage used, that is, cement plus supplementary
cementitious materials (SCMs). Similarly, we calculated the admixture percentage based on the
cement and admixture dosages in kg/m?3, allowing us to deduce the cement-to-admixture ratio
using Equation 2.

Figure 9 shows the admixture dosage in kg/m® as a function of the admixture percentage
calculated relative to the equivalent binder, obtained from the literature results using Equation 3.
We obtained a trend curve with a coefficient of determination R* of 89.08%.

SP[kg/m3] = —0,12 + 5,47 X SP[%] With R* =89.08 % (3)
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5. Conclusions

This literature review presents a comprehensive analysis of self-compacting concrete (SCC),
focusing on admixtures and examining rheology through tests such as the Abrams cone slump
flow, T500 flow time, L-box blocking ratio, and V-funnel flow time. The study revealed that the
sole admixture dosage used was not sufficient to accurately reflect the desired SCC rheology, with
divergent results despite similar dosages of high-range water-reducing admixtures from different
suppliers.

Two main parameters, water and admixture, must be considered to achieve a well-defined
rheology. Increasing the water dosage linearly increased the SCC rheology, whereas each
admixture exhibited unique behavior. The combination of both allows for the determination of an
"equivalent water content." This suggests that each admixture has a specific coefficient K that
depends on the molecular type and solid content of the admixture. This coefficient K, an empirical
factor, is crucial for adjusting the required water dosage to obtain comparable rheological results
between different SCC mixtures.

It is possible to obtain the same rheological results with SCC compositions, with or without
supplementary cementitious materials (SCMs) such as fly ash, used in this study, by using the
same water and admixture dosages. Furthermore, these results can be achieved by varying the
water and admixture proportions, either using a low admixture dosage with a high water dosage
or using a high vice versa. The first option, which is less expensive, promotes the creation of
concrete with high porosity, whereas the second option allows for achieving considerable
strength, high granular compactness, and increased durability.

The analysis also highlights the importance of the equivalence coefficient, K, in achieving similar
rheology between different types of SCC by adjusting the water dosage relative to the admixture
dosage. This study paves the way for new research to standardize coefficient K, which offers a
standardized and efficient method for admixture producers and construction professionals to
optimize admixture use in concrete formulation, facilitating the precise formulation of concrete
tailored to specific requirements.

By integrating this understanding into formulation and standardization practices, it is possible to
improve the predictability and consistency of fresh and hardened concrete properties while
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stimulating innovation in the development of more efficient admixtures. Establishing an
admixture classification based on a protocol that includes the coefficient K would standardize the
industry and improve the quality of the final products. This classification would also foster
continuous innovation in admixture development, meeting the evolving needs of modern
construction projects in terms of performance, efficiency, and long-term durability.
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