Mechanical characteristics of compressed earth blocks, compressed stabilized earth blocks and stabilized adobe bricks with cement in the town of Ngaoundere - Cameroon

  • Janvier Goutsaya Groupe de Mécanique, Matériaux et Acoustique (GMMA), Département de Physique, Faculté des Sciences, Université de Ngaoundéré, B.P.: 454 Ngaoundéré, Cameroun.
  • Guy Edgar Ntamack Groupe de Mécanique, Matériaux et Acoustique (GMMA), Département de Physique, Faculté des Sciences, Université de Ngaoundéré, B.P.: 454 Ngaoundéré, Cameroun.
  • Bienvenu Kenmeugne Département des Génies Industriel et Mécanique, Ecole Nationale Supérieure Polytechnique de Yaoundé, Université de Yaoundé 1, B.P.: 8390 Yaoundé, Cameroun
  • Saâd Charif d’Ouazzane LMTM: Laboratoire de Mécanique, Thermique et Matériaux, Ecole Nationale Supérieure des Mines, Rabat, ENSM, B.P. 753 Rabat, Maroc
Keywords: plasticity; stabilization; adobe earth bricks (AEBs); adobe stabilized earth bricks (ASEBs); compressed earth blocks (CEBs); compressed stabilized earth blocks (CSEBs).

Abstract

The aim of this study is to examine the effects of cement stabilization on the mechanical stress of compressed stabilized earth blocks (CSEBs) and adobe stabilized earth bricks (ASEBs). Hence, this work is based on an experimental study carried out in order to determine the geotechnical properties of the samples soil, namely, the dry particle size analysis after washing, the particle size distribution by sedimentometry, Atterberg limits, and the preparation of specimens with different levels of cement  proportions. Moreover, single compression and three-point bending compression out on specimens measuring 4x4x4cm3 and 4x4x16cm3 respectively. The findings indicate that dosing with 8% cement results in a clear increase in compression stress of approximately 25.55% for CSEBs compared to the reference set at 0% and 22.85% for ASEBs. On the other hand, for a dosage of 4%, we observe a slight increase in stress by simple compression of around 3.26% for CSEBs and 3.14% for ASEBs. For three-point bending compression for a cement dosage of 8%, there is also an increase in stress of about 25% for the CSEBs compared to the reference taken at 0% and 23.02% for the ASEBs.

References

AFNOR (1993a), NF P 94-051. Sols: reconnaissance et essai - Détermination des limites d’Atterberg Limite de liquidité à la coupelle-Limite de plasticité au rouleau.

AFNOR (1995a), NF P 94-056. Reconnaissance et essais - Identification granulométrique - Méthode de tamisage par voie humide.

AFNOR (1992), NF P94-057. Analyse granulométrique des sols, Méthode par sédimentation.

AFNOR (1993b), NF P 94-068. Mesure de la quantité et de l’activité de la fraction argileuse essai à la tâche.

AFNOR (1995b), NF EN 197-1 (P15-101-1): Ciment-partie 1 : composition, spécifications et critères de conformité de ciment courants.

Akpokodje EG. (1985). The stabilization of some arid zone soils with cement and lime. Quarterly Journal of Engineering Geology London, 18, 173–180.

Amougou, J. A., Abossolo, S. A., Hindjang, M., (2015). Variabilité des précipitations à Koundja et à Ngaoundere en rapport avec les anomalies de la température de l’océan atlantique et el nino. Rev. Ivoire Sciences Technologie, 25 : 111 - 112.

Bahar, R., Benazzoug, M., Kenai, S., (2004). Performance of compacted cement - stabilised soil. Cem. Concr. Compos., 26 : 811- 820.

Césaire, H., Adamah, M., Abdou, L., Georey, M., V., (2020). Impact of the Design of Walls Made of Compressed Earth Blocks on the Thermal Comfort of Housing in Hot Climate. Buildings, 10: 157.

Chrétien, M., Fabre, R., (2007). Recherche des paramètres d’identification géotechnique optimaux pour une classification des sols sensibles au retrait-gonflement. Géotechnique,: 91-106.

Dao, K., Ouedraogo, M., Millogo, Y., Aubert, J. E., Gomina, M., (2018). Thermal, hydric and mechanical behaviours of adobes stabilized with cement. Constr. Build. Mater., 158: 84 - 96.

Elisabete, R. T., Gilberto, M., Adilson, P. J., Christiane, G., (2020). Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies, 13: 2978.

Ghorab H. Y., Anter A., El Miniawy H., (2007). Building with local materials: stabilized soil and industrial wastes. Materials and Manufacturing Processes., 22 : 157-162.

Guanqi L., Sisi C., Yihong W., and Ying C., (2021). Methods to Test the Compressive Strength of Earth Blocks. Hindawi Advances in Materials Science and Engineering, ID 1767238: 11 https://doi.org/10.1155/2021/1767238.

Houben, H., Rigassi, V., Garnier, P., (1996). Blocs de terre comprimée: équipements de production. CRATerre Bruxelles Belgique, ISBN: 2-906901-12-1.

Inim, I. J., Affiah, U. E., Eminue, O. O., (2018). Assessment of bamboo leaf ash/lime-stabilized lateritic soils as construction materials. Innovation Infrastructure Solution, 3: 32.

Kariyawasam, KKGKD., Jayasinghe, K., (2016). Cement stabilized rammed earth as a sustainable construction material. Constr. Build. Mater., 105: 519 - 527.

Ronglin, C., (2020). Mechanical and Thermal Behaviors of Cement Stabilized Compressed Earth Bricks. Earth Environ. Sci. 474 072090. doi:10.1088/1755-1315/474/7/072090.

Ruiz, G., Zhang, X., Edris, W. F., Cañas, I., Garijo, L., (2018). A comprehensive study of mechanical properties of compressed earth blocks. Constr. Build. Mater., 176: 566-572.

Meukam, P., Jannot, Y., Noumowe, A., Kofane, T.C., (2004). Thermo-physical characteristics of economical building materials. Constr. Build. Mater., 18: 438 - 442.

Morel J. C., Abalé P., Di Benedetto (2003). Essai in situ sur blocs de terre comprimée. Revue Française de Génie Civil, 7:2, 221-237, DOI 10.1080/12795119.2003.9692490.

Ntamack, G., Degho, T., Beda, T., Charif D’Ouazzane, S., (2012). Determination of Mechanical Characteristics of Compressed and Stabilized Earth Blocks by Cement, by the Mixture Cement and Sawdust, and by the Lime through the Elasticity-Damaging Coupling Model. International Journal of Science and Technology, ISSN 2224-3577: 669 - 670.

Sekhar, D. C., Nayak, S., (2018). Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Constr. Build. Mater., 166: 531-536.

Toure, P. M., Sambou, V., Faye, M., Thiam, A., Adj, M., Azilinon, M., (2017). Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). J Build Eng., 13: 266 - 271.

Tran, K., Satomi, T., Takahashi, H., (2018). Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Constr. Build. Mater., 178: 204 - 210.

Walker, P. J., (2004). Strength and erosion characteristics of earth blocks and earth block masonry. J Mater Civ Eng., 16(5): 497 - 506.

Zhang, L., Gustavsen, A., Jelle, B.P., Yang, L., Gao, T., Wang, Y., (2017). Thermal conductivity of cement stabilized earth blocks. Constr. Build. Mater. 151: 504 - 511.

Published
2021-12-31
How to Cite
Goutsaya, J., Ntamack, G. E., Kenmeugne, B., & Charif d’Ouazzane, S. (2021). Mechanical characteristics of compressed earth blocks, compressed stabilized earth blocks and stabilized adobe bricks with cement in the town of Ngaoundere - Cameroon. Journal of Building Materials and Structures, 8(2), 139-159. https://doi.org/10.34118/jbms.v8i2.1441
Section
Original Articles