Influence of the thermomechanical loading on the behavior of high performance concrete and ordinary concrete

  • Moulaï Abdellah Bouabdallah Department of Civil Engineering, National Polytechnic School of Oran, Algeria. 2-LCTC, Laboratory for Construction Technical Control in Oran - Algeria.
Keywords: High Performance Concrete, Ordinary Concrete, Thermomechanical Loading, Constraint/Deformation, Elastic modulus, Ultrasound

Abstract

The present article aims to present an experimental study to investigate the behavior of high performance concrete and ordinary concrete that were subjected to thermomechanical loading. The mechanical properties of both types of concrete, which underwent heat treatment, were studied at room temperature. In addition, the compressive strength was tested and calculated at different ages, namely 7, 14, 28 and 60 days. For each test, the samples were heated at a rate of 5 °C/min, until the following temperatures were reached, i.e. 250 °C, 350 °C, 450 °C, 600 °C and 900 °C. The target temperature was kept constant for one hour in order to ensure that it was uniform throughout the sample, before cooling. Moreover, the sample weight was measured before and after heating in order to determine the weight loss of the samples tested. The findings allowed concluding that the mechanical characteristics of concrete were enhanced after exposure to temperatures within the range from 250 °C to 450 °C.

References

Alarcon-Ruiz, L. (2003). Analyse de l'évolution des propriétés microstructurales des bétons lors d'une élévation de la température (Doctoral dissertation, Marne-la-vallée, ENPC).

Bouabdallah, M. A. (2006). Comportement du béton sous l’effet d’une élévation de la température, Thèse de magister, Département de génie civil, Université des Sciences et de la Technologie d’Oran - Mohamed Boudiaf.

Bouabdallah, M. A. (2008). Etude comparative du béton haute performance et un béton ordinaire soumises à un chargement thermomécanique , Actes des 6ème Journées de Mécanique de l’Ecole Militaire Polytechnique, 15-16 Avril, Bordj El Bahri, Alger.

Courivaud, J. M., Bacon, G., & Crausse, P. (1997). Simulation numérique du comportement d'un béton cellulaire dans sa phase d'élaboration sous gradient de pression de vapeur à haute température. Revue générale de thermique, 36(4), 264-275.

Douk, N., Vu, X. H., Larbi, A. S., Audebert, M., & Chatelin, R. (2021). Numerical study of thermomechanical behaviour of reinforced concrete beams with and without textile reinforced concrete (TRC) strengthening: Effects of TRC thickness and thermal loading rate. Engineering Structures, 231, 111737.

Drzymała, T., Jackiewicz-Rek, W., Tomaszewski, M., Kuś, A., Gałaj, J., & Šukys, R. (2017). Effects of high temperature on the properties of high performance concrete (HPC). Procedia Engineering, 172, 256-263.

Dubois, F., Bonvalet, C., Dawance, G., & Marechal, J. C. (1967). Comportement d'un caisson en béton précontraint soumis à un gradient de température élevé. Nuclear Engineering and Design, 6(3), 273-300.

Horszczaruk, E., Sikora, P., & Zaporowski, P. (2015). Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature. Procedia Engineering, 108, 39-46.

Liu, F., Feng, W., Xiong, Z., Tu, G., & Li, L. (2018). Static and impact behaviour of recycled aggregate concrete under daily temperature variations. Journal of Cleaner Production, 191, 283-296.

Nastic, M., Bentz, E. C., Kwon, O. S., Papanikolaou, V., & Tcherner, J. (2019). Shrinkage and creep strains of concrete exposed to low relative humidity and high temperature environments. Nuclear Engineering and Design, 352, 110154.

Nguyen, P. L., Vu, X. H., & Ferrier, E. (2019). Elevated temperature thermomechanical behaviour of near surface mounted CFRP reinforced concrete specimens: Effect of adhesive at concrete/CFRP interface. Engineering Structures, 197, 109361.

Noumowé, N. A. (1995). Effet de hautes températures (20 C-600 C) sur le béton. Casparticulier du BHP (Doctoral dissertation, Thèse de Doctorat de l'INSA de Lyon).

Prajapati, R., Gettu, R., & Singh, S. (2021). Thermomechanical beneficiation of recycled concrete aggregates (RCA). Construction and Building Materials, 310, 125200.

Simonin, F. (2000). Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle du magnésium, Thèse de Doctorat de l'INSA de Lyon. 165 p (2000).

Torelli, G., Gillie, M., Mandal, P., Draup, J., & Tran, V. X. (2020). A moisture-dependent thermomechanical constitutive model for concrete subjected to transient high temperatures. Engineering Structures, 210, 110170..

Tsimbrovska, M., (1998. Dégradation des bétons à hautes performances soumis à des températures élevées, évolution de la perméabilité en liaison avec la microstructure, Thèse de Doctorat de l’Université Joseph Fourier Grenoble 1.

Yermak, N. (2015). Comportement à hautes températures des bétons additionnés de fibres, Thèse de doctorat, l’université de Cergy-Pontoise.

Published
2022-05-27
How to Cite
Bouabdallah, M. A. (2022). Influence of the thermomechanical loading on the behavior of high performance concrete and ordinary concrete. Journal of Building Materials and Structures, 9(1), 87-97. https://doi.org/10.34118/jbms.v9i1.1598
Section
Original Articles