Fatigue behavior of damaged concrete beams repaired with composite material

  • Khamis Hadjazi Laboratoire de Structures de Composites et Matériaux innovants, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d’Oran, BP 1505 El M’naouer, USTO, Oran, Algérie.
  • A. Hamiani Laboratoire de Structures de Composites et Matériaux innovants, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d’Oran, BP 1505 El M’naouer, USTO, Oran, Algérie.
  • Sereir Zouaoui Laboratoire de Structures de Composites et Matériaux innovants, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d’Oran, BP 1505 El M’naouer, USTO, Oran, Algérie.
  • Amziane Sofiane Université Clermont Auvergne, CNRS, INP Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
Keywords: FRP/concrete, Crack, Repair, Fatigue, CZ model, Shear stresses, Debonding

Abstract

By the present paper, an analytical model was developed to study the cracked FRP-strengthened reinforced concrete beams subjected to fatigue loading. In order to follow the distribution of interfacial shear stresses causing the debonding phenomenon, a new analytical model based on the cohesive zone (CZ) approach was developed. The present model has the possibility to describe the evolution of the shear stress in the three zones (elastic, microcrack and debonding) and the bearing capacity of the repaired structure. Interface damage scenarios were evaluated for a fatigue load estimated to 90% of the elastic load and another at 60% of the ultimate load Pu.  Results obtained are in good agreement with those given by the literature. The results showed that the shear strength developed by the repaired beam is sensitive to the variation of the mechanical properties (Concrete, FRP and Adhesive layer), the fatigue load ratio and the number of cycles. These parameters can be considered as indicators of damage affecting the health status of the structure repaired during fatigue. The debonding at the FRP-concrete interface noticeably reduced the strength and lifespan of the repaired structure. 

References

Attari, N., Amziane, S., & Chemrouk, M. (2010). Efficiency of beam–column joint strengthened by FRP laminates. Advanced Composite Materials, 19(2), 171-183.

Bennegadi, M. L., Hadjazi, K., Sereir, Z., Amziane, S., & El Mahi, B. (2016). General cohesive zone model for prediction of interfacial stresses induced by intermediate flexural crack of FRP-plated RC beams. Engineering Structures, 126, 147-157.

Bigaud, D., & Ali, O. (2014). Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions. Reliability Engineering & System Safety, 131, 257-270.

Chen, C., & Cheng, L. (2016). Theoretical solution to fatigue bond stress distribution of NSM FRP reinforcement in concrete. Composites Part B: Engineering, 99, 453-464.

Dai, J., Ueda, T., & Sato, Y. (2005). Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method. Journal of composites for construction, 9(1), 52-62.

Diab, H. M., Wu, Z., & Iwashita, K. (2009). Theoretical solution for fatigue debonding growth and fatigue life prediction of FRP-concrete interfaces. Advances in structural engineering, 12(6), 781-792.

Ghovanlou, M K., Jahed, H., & Khajepour, A. (2014). Cohesive zone modeling of fatigue crack growth in brazed joints. Engineering Fracture Mechanics, 120, 43-59.

Hadjazi, K., Sereir, Z., & Amziane, S. (2012). Cohesive zone model for the prediction of interfacial shear stresses in a composite-plate RC beam with an intermediate flexural crack. Composite Structures, 94(12), 3574-3582.

Hadjazi, K., Sereir, Z., & Amziane, S. (2016). Creep response of intermediate flexural cracking behavior of reinforced concrete beam strengthened with an externally bonded FRP plate. International journal of solids and structures, 94, 196-205.

Houachine, H. R., Sereir, Z., & Amziane, S. (2022). Creep model for the long-term behaviour of combined cohesive-bridging model of FRP–concrete interface debonding under axial loading. European Journal of Environmental and Civil Engineering, 26(12), 5594-5616.

Johar, M., Kosnan, M. S. E., & Tamin, M. N. (2014). Cyclic cohesive zone model for simulation of fatigue failure process in adhesive joints. In Applied Mechanics and Materials (Vol. 606, pp. 217-221). Trans Tech Publications Ltd.

Oudah, F., & El-Hacha, R. (2013). Analytical fatigue prediction model of RC beams strengthened in flexure using prestressed FRP reinforcement. Engineering Structures, 46, 173-183.

Paipetis, A. S., Dimarogonas, A. D. (1986). Analytical Methods in Rotor Dynamics. Elsevier Applied Science, London.

Rasheed, H. A., & Pervaiz, S. (2002). Bond slip analysis of fiber-reinforced polymer-strengthened beams. Journal of engineering mechanics, 128(1), 78-86.

Rezazadeh, M., & Carvelli, V. (2018). A damage model for high-cycle fatigue behavior of bond between FRP bar and concrete. International Journal of Fatigue, 111, 101-111.

Roe, K. L., & Siegmund, T. (2003). An irreversible cohesive zone model for interface fatigue crack growth simulation. Engineering fracture mechanics, 70(2), 209-232.

Sherif El-Tawil, Ogunc, C., Okeil, A., & Shahawy, M. (2001). Static and fatigue analyses of RC beams strengthened with CFRP laminates. Journal of composites for construction, 5(4), 258-267.

Tounsi, A. (2006). Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate. International Journal of solids and Structures, 43(14-15), 4154-4174.

Wahab, N., Soudki, K. A., & Topper, T. (2012). Experimental investigation of bond fatigue behavior of concrete beams strengthened with NSM prestressed CFRP rods. Journal of composites for construction, 16(6), 684-692.

Wahab, N., Topper, T., & Soudki, K. A. (2015). Modelling experimental bond fatigue failures of concrete beams strengthened with NSM CFRP rods. Composites Part B: Engineering, 70, 113-121.

Wang, J. (2006). Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam. International journal of solids and structures, 43(21), 6630-6648.

Wang, J., & Qiao, P. (2004). Interface crack between two shear deformable elastic layers. Journal of the Mechanics and Physics of Solids, 52(4), 891-905.

Wang, J., & Zhang, C. (2008). Nonlinear fracture mechanics of flexural–shear crack induced debonding of FRP strengthened concrete beams. International journal of solids and structures, 45(10), 2916-2936.

Wu, Z., & Yin, J. (2003). Fracturing behaviors of FRP-strengthened concrete structures. Engineering Fracture Mechanics, 70(10), 1339-1355.

Wu, Z., Iwashita, K., Ishikawa, T., Hayashi, K., Hanamori, N., Higuchi, T., ... & Ichiryu, T. (2003). Fatigue performance of RC beams strengthened with externally prestressed PBO fiber sheets. In Fibre-Reinforced Polymer Reinforcement for Concrete Structures: (In 2 Volumes) (pp. 885-894).

Xinyan, G., Wang, Y., Huang, P., & Chen, Z. (2019). Finite element modeling for fatigue life prediction of RC beam strengthened with prestressed CFRP based on failure modes. Composite Structures, 226, 111289.

Xuan, C., & Vormwald, M. (2013). Application of a new cohesive zone model in low cycle fatigue. Solids and Structures, 2(3), 31-40.

Published
2022-10-21
How to Cite
Hadjazi, K., Hamiani, A., Zouaoui, S., & Sofiane, A. (2022). Fatigue behavior of damaged concrete beams repaired with composite material . Journal of Building Materials and Structures, 9(2), 122-132. https://doi.org/10.34118/jbms.v9i2.1772
Section
Original Articles