Formulation and characterisation of micro and macro polypropylene fibre reinforced mortar
Abstract
The objective of this work is to study the physical and mechanical characteristics of mortars reinforced by synthetic fibres. The work is carried out on mortars, using limestone crushing sand, composite cement and synthetic fibres. The fibres used as reinforcement of these mortars are synthetic fibres of polypropylene coming from industrial wastes; micro fibres having a diameter of 0.25 mm and macro fibres with a diameter of 0.45 mm. The used fibres have the same length of 30 mm. The results revealed that the addition of polypropylene fibres has a negative effect on the workability of the mixture, especially micro fibres. However, the mechanical properties of mortars have been enhanced. The weight loss is close in all mortars.
References
Abdullah, M. Z., Afzal, H. K. & Bassam, A. T. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806-818.
Akkaya. Y., Shah. S. P. & Ankenman. B. (2001). Effect of fiber dispersion on multiple cracking of cement composites. Journal of Engineering Mechanics, 127(4), 311-316.
Alengaram, U. J., Soon, P.Y. & Jumaat, M. Z. (2013). Enhancement of mechanical properties in polypropylene and nylon fibre reinforced oil palm shell concrete. Material and Design Journal, 49, 1034-1041.
Ammari, M. S., Bederina, M. Belhadj. B. & Merrah.A. (2020). Effect of steel fibers on the durability properties of sand concrete with barley straws. Construction and Building Materials, 264, 120689.
Antoš, J., Dejdar, L., Trejbal, J.& Prošek, Z. (2017). Performance of cement composites reinforced with surface-modified polypropylene micro-and macro-fibers. Acta. Polytechnica CTU Proceedings, 13, 11-15.
Banthia, N. & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research Journal, 36, 1263-1267.
Bendjillali, K. & Chemrouk, M. (2016). Efficiency of plastic fibres waste on the physico-mechanical properties of mortars in hot-dry conditions. International Journal of Natural Sciences Research, 4(4), 75-82.
Bendjillali, K. & Chemrouk, M. (2017). Use of recycled PP fibres in concrete. 3rd International Symposium on Materials and Sustainable Development, 07-08 Nov, Boumerdes, Algeria, p 462.
Bendjillali, K. & Chemrouk, M. (2018). Study of the reinforcement of structure members by polypropylene fibres waste. MATEC Web of Conferences, p 149.
Bendjillali, K. (2015). Etude de l’influence de renforcement fibreux en polypropylène sur les performances physico-mécaniques et sur la durabilité des mortiers de ciment à base de sable calcaire. Doctoral Thesis, Houari Boumediene University USTHB, Algiers, Algeria.
Dreux. G, & Festa. J. 2006. Nouveau guide de béton et de ses constituants. Eyrolles. Huitième Edition.
Hadjoudja, M., Benzaid, R., Mesbah, H. A., Makhloufi, Z. & Bederina, M. (2021). Effect of mineral additions and metal fibers on the resistance of cracking of the dune sand concretes. Iranian Journal of Science and Technology.
Hadjoudja, M., Mesbah, H. A., Bederina, M. & Makhloufi, Z. (2019). Modeling of dimensional variations of a dune sand concrete reinforced by addition of steel fibers. Journal of Adhesion Science and Technology.
Hasan, M. J., Afroz, M. & Mahmud, H. M. I. (2011). An experimental investigation on mechanical behavior of macro synthetic fiber reinforced concrete. International Journal of Civil and Environmental Engineering IJCEE-IJENS, 11(03), p 6.
Kheribet, R., Benmounah, A., Samar, M. & Saidi, M. (2011). Action de superplastfiants poly carboxylate et poly naphtalène sulfonâtes sur les propriétés rhéologiques et physico mécaniques des ciments CEMI et CRS. Séminaire international, Innovation et Valorisation en Génie Civil et Matériaux de Construction, 1, 314-321.
Krobba, B., Bouhicha, M., Kenai, S. & Courard, L. (2018). Formulation of low cost eco-repair mortar based on dune sand and Stipa tenacissima microfibers plant. Construction and Building Materials, 10, 950–959.
Mamlouk, M. S. & Zaniewski, J. P. (2011). Materials for civil and construction engineers, 3rd Edition. Upper Saddle River: Prentice Hall.
Manaswini, C. & Vasu, Deva. (2015), Fibre Reinforced Concrete from Industrial Waste-A Review, International Journal of Innovative Research in Science, Engineering and Technology, 4(12), 11751-11758.
Mesbah, H. A. & Buyle-Bodin, F. (1999). Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Construction and Building Materials, 13(8), 439-447.
Ozyurt, N., Mason, T. O. & Shah, S. P. (2007). Correlation of fiber dispersion, rheology and mechanical performance of FRCs. Cement and concrete composites, 29(2), 70-79.
Pereira de Oliveira, L. A. & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials Journal, 25, 1712-1717.
Sebaibi, N., Benzerzour, M. & Abriak, N. E. (2014). Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders. Construction and Building Materials Journal, 65, 254-263.
Sohaib, N., Mamoon, R., Seemab, F., & Sana. G. (2018). Using polypropylene fibres in concrete to achieve maximum strength. Conference: Eighth International Conference on Advances in Civil and Structural Engineering - CSE 2018, Malaysia, 37-42.
Song, P. S., Hwang, S.&Sheu, B. C. (2005). Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35, 1546-1550.
Söylev, T. A. & Özturan, T.(2014). Durability, physical and mechanical properties of fiber reinforced concretes at low volume fraction. Construction and Building Materials Journal, 73, 67-75.
Copyright (c) 2022 Journal of Building Materials and Structures
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.