Formulation and characterisation of micro and macro polypropylene fibre reinforced mortar

  • Fatiha Bendjilali Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali, Chlef, Algeria
  • Khadra Bendjillali Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji, Laghouat, Algeria
  • Krobba Benharzallah Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji, Laghouat, Algeria
Keywords: Mortar, Polypropylene fibres, Micro fibre, Macro fibre, Workability, Mechanical strength, Weight loss

Abstract

The objective of this work is to study the physical and mechanical characteristics of mortars reinforced by synthetic fibres. The work is carried out on mortars, using limestone crushing sand, composite cement and synthetic fibres. The fibres used as reinforcement of these mortars are synthetic fibres of polypropylene coming from industrial wastes; micro fibres having a diameter of 0.25 mm and macro fibres with a diameter of 0.45 mm. The used fibres have the same length of 30 mm. The results revealed that the addition of polypropylene fibres has a negative effect on the workability of the mixture, especially micro fibres. However, the mechanical properties of mortars have been enhanced. The weight loss is close in all mortars.

References

Abdullah, M. Z., Afzal, H. K. & Bassam, A. T. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806-818.

Akkaya. Y., Shah. S. P. & Ankenman. B. (2001). Effect of fiber dispersion on multiple cracking of cement composites. Journal of Engineering Mechanics, 127(4), 311-316.

Alengaram, U. J., Soon, P.Y. & Jumaat, M. Z. (2013). Enhancement of mechanical properties in polypropylene and nylon fibre reinforced oil palm shell concrete. Material and Design Journal, 49, 1034-1041.

Ammari, M. S., Bederina, M. Belhadj. B. & Merrah.A. (2020). Effect of steel fibers on the durability properties of sand concrete with barley straws. Construction and Building Materials, 264, 120689.

Antoš, J., Dejdar, L., Trejbal, J.& Prošek, Z. (2017). Performance of cement composites reinforced with surface-modified polypropylene micro-and macro-fibers. Acta. Polytechnica CTU Proceedings, 13, 11-15.

Banthia, N. & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research Journal, 36, 1263-1267.

Bendjillali, K. & Chemrouk, M. (2016). Efficiency of plastic fibres waste on the physico-mechanical properties of mortars in hot-dry conditions. International Journal of Natural Sciences Research, 4(4), 75-82.

Bendjillali, K. & Chemrouk, M. (2017). Use of recycled PP fibres in concrete. 3rd International Symposium on Materials and Sustainable Development, 07-08 Nov, Boumerdes, Algeria, p 462.

Bendjillali, K. & Chemrouk, M. (2018). Study of the reinforcement of structure members by polypropylene fibres waste. MATEC Web of Conferences, p 149.

Bendjillali, K. (2015). Etude de l’influence de renforcement fibreux en polypropylène sur les performances physico-mécaniques et sur la durabilité des mortiers de ciment à base de sable calcaire. Doctoral Thesis, Houari Boumediene University USTHB, Algiers, Algeria.

Dreux. G, & Festa. J. 2006. Nouveau guide de béton et de ses constituants. Eyrolles. Huitième Edition.

Hadjoudja, M., Benzaid, R., Mesbah, H. A., Makhloufi, Z. & Bederina, M. (2021). Effect of mineral additions and metal fibers on the resistance of cracking of the dune sand concretes. Iranian Journal of Science and Technology.

Hadjoudja, M., Mesbah, H. A., Bederina, M. & Makhloufi, Z. (2019). Modeling of dimensional variations of a dune sand concrete reinforced by addition of steel fibers. Journal of Adhesion Science and Technology.

Hasan, M. J., Afroz, M. & Mahmud, H. M. I. (2011). An experimental investigation on mechanical behavior of macro synthetic fiber reinforced concrete. International Journal of Civil and Environmental Engineering IJCEE-IJENS, 11(03), p 6.

Kheribet, R., Benmounah, A., Samar, M. & Saidi, M. (2011). Action de superplastfiants poly carboxylate et poly naphtalène sulfonâtes sur les propriétés rhéologiques et physico mécaniques des ciments CEMI et CRS. Séminaire international, Innovation et Valorisation en Génie Civil et Matériaux de Construction, 1, 314-321.

Krobba, B., Bouhicha, M., Kenai, S. & Courard, L. (2018). Formulation of low cost eco-repair mortar based on dune sand and Stipa tenacissima microfibers plant. Construction and Building Materials, 10, 950–959.

Mamlouk, M. S. & Zaniewski, J. P. (2011). Materials for civil and construction engineers, 3rd Edition. Upper Saddle River: Prentice Hall.

Manaswini, C. & Vasu, Deva. (2015), Fibre Reinforced Concrete from Industrial Waste-A Review, International Journal of Innovative Research in Science, Engineering and Technology, 4(12), 11751-11758.

Mesbah, H. A. & Buyle-Bodin, F. (1999). Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Construction and Building Materials, 13(8), 439-447.

Ozyurt, N., Mason, T. O. & Shah, S. P. (2007). Correlation of fiber dispersion, rheology and mechanical performance of FRCs. Cement and concrete composites, 29(2), 70-79.

Pereira de Oliveira, L. A. & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials Journal, 25, 1712-1717.

Sebaibi, N., Benzerzour, M. & Abriak, N. E. (2014). Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders. Construction and Building Materials Journal, 65, 254-263.

Sohaib, N., Mamoon, R., Seemab, F., & Sana. G. (2018). Using polypropylene fibres in concrete to achieve maximum strength. Conference: Eighth International Conference on Advances in Civil and Structural Engineering - CSE 2018, Malaysia, 37-42.

Song, P. S., Hwang, S.&Sheu, B. C. (2005). Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35, 1546-1550.

Söylev, T. A. & Özturan, T.(2014). Durability, physical and mechanical properties of fiber reinforced concretes at low volume fraction. Construction and Building Materials Journal, 73, 67-75.

Published
2022-05-30
How to Cite
Bendjilali, F., Bendjillali, K., & Benharzallah, K. (2022). Formulation and characterisation of micro and macro polypropylene fibre reinforced mortar. Journal of Building Materials and Structures, 9(1), 98-109. https://doi.org/10.34118/jbms.v9i1.2082
Section
Original Articles