Impact of electric arc furnace slag on geopolymer composites exposed to sulphate solution

  • Hisham Mustafa Mohamed khater Housing and Building National Research Centre (HBNRC), 87 El-Tahreer St., Dokki, Giza, P.O. Box 12411 Cairo. Country Egypt
Keywords: Geopolymer, Arc furnace slag, Durability, Cement dust, Sulfate

Abstract

Effect of sulfate solution on the geopolymer formed from electric arc furnace slag (EAF) along with water cooled slag and cement kiln dust was studied. Activation was carried up on usage of 25% CKD as it bears high alkali content that can initiate and propagate the polymerization process. The formed geopolymer products were immersed in 5% MgSO4 solution to determine the stability up on sulfate attack. FTIR, XRD, SEM, compressive strength and water absorption were utilized to examine the resulted geopolymer product under sulfate attack. Results showed that, the compressive strength of geopolymer specimens increase with EAF slag up to 50% then decrease with further slag increase, possessing stability up 12 months and giving an increased compressive strength than the control mix that has not EAFS by 6.53%, 14.72%, 47.44% and -4.89 % after immersing ages of 3 months and 2.26, 14.26, 43.97 and 19.98 % after immersing age of 12 months for replacement by 10, 25, 50 and 75% of EAFS, respectively. Data elucidated a good stability and resistance of mix containing slag substitution by 50 % EAF and 25 % GGBFS and results in further enhancement in both mechanical and microstructural characteristics than the non-immersed samples (28days).

References

ASTM C1012/ C1012M. (2015). Test method for length change of hydraulic cement mortars exposed to a sulfate solution.

ASTM C109M. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.

ASTM C140. (2016). Standard test methods for sampling and testing concrete masonry units and related units.

Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35(6), 1233-1246.

Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and concrete research, 29(10), 1619-1625.

Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2002). Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 32(2), 211-216.

Bernal, S. A., Rodríguez, E. D., de Gutiérrez, R. M., Provis, J. L., & Delvasto, S. (2012). Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste and Biomass Valorization, 3(1), 99-108.

Beshr, H., Almusallam, A. A., & Maslehuddin, M. (2003). Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and building materials, 17(2), 97-103.

Brough, A. R., & Atkinson, A. (2002). Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32(6), 865-879.

Brown, P. W., & Bothe Jr, J. V. (1993). The stability of ettringite. Advances in Cement Research, 5(18), 47-63.

Buchwald, A., Tatarin, R., & Stephan, D. (2009). Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. Journal of materials science, 44(20), 5609-5617.

Chang, J. J. (2003). A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research, 33(7), 1005-1011.

Cohen, M. D., & Mather, B. (1991). Sulfate attack on concrete: research needs. Materials Journal, 88(1), 62-69.

Conner, J. R. (1990). ChemicalFixation and Solidificationof Hazardous Wastes. Van Nostrand Reinhold, New York, 692, 1990, p 335.

Criado, M., Palomo, A., Fernández-Jiménez, A., & Banfill, P. F. G. (2009). Alkali activated fly ash: effect of admixtures on paste rheology. Rheologica Acta, 48(4), 447-455.

Daux, V., Guy, C., Advocat, T., Crovisier, J. L., & Stille, P. (1997). Kinetic aspects of basaltic glass dissolution at 90 C: role of aqueous silicon and aluminium. Chemical Geology, 142(1-2), 109-126.

Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and calorimetry, 37(8), 1633-1656.

Davidovits, J. (1999). Chemistry of geopolymeric systems, terminology. In proceeding of Second International Conference Geopolymer, 99(292), 9-39.

De Vargas, A. S., Dal Molin, D. C., Masuero, Â. B., Vilela, A. C., Castro-Gomes, J., & de Gutierrez, R. M. (2014). Strength development of alkali-activated fly ash produced with combined NaOH and Ca (OH) 2 activators. Cement and Concrete Composites, 53, 341-349.

Douglas, E., Bilodeau, A., Brandstetr, J., & Malhotra, V. M. (1991). Alkali activated ground granulated blast-furnace slag concrete: preliminary investigation. Cement and concrete research, 21(1), 101-108.

El-Sayed, H. A., Abo, E. E. S., Khater, H. M., & Hasanein, S. A. (2011). Resistance of alkali activated water-cooled slag geopolymer to sulphate attack. Ceramics-Silikáty, 55(2), 153-160.

Escalante Garcia, J. I., Campos-Venegas, K., Gorokhovsky, A., & Fernandez, A. (2006). Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus. Advances in applied ceramics, 105(4), 201-208.

Escalante‐García, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire‐Luna, P. E., & Mendoza‐Suarez, G. (2003). Hydration Products and Reactivity of Blast‐Furnace Slag Activated by Various Alkalis. Journal of the American Ceramic Society, 86(12), 2148-2153.

Famy, C. (1999). Expansion of heat-cured mortars. Doctoral dissertation, Imperial College London, University of London, 256p.

Farmer, V. C. (1974). Infrared spectra of minerals. Mineralogical society, London.

Feret R (1939). Revue des Materiaux de Construction et Travaux Publics, 352, 1.

Fernández-Díaz, L., Fernández-González, Á., & Prieto, M. (2010). The role of sulfate groups in controlling CaCO3 polymorphism. Geochimica et Cosmochimica Acta, 74(21), 6064-6076.

Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and concrete research, 35(6), 1204-1209.

Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Materiales de Construcción, 56(281), 51-65.

Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars: mechanical strength behaviour. Cement and Concrete Research, 29(8), 1313-1321.

Frías, M., De Rojas, M. S., & Uría, A. (2002). Study of the instability of black slags from electric arc furnace steel industry. Materiales de Construcción, 52(267), 79-83..

Gollop, R. S., & Taylor, H. F. W. (1992). Microstructural and microanalytical studies of sulfate attack. I. Ordinary Portland cement paste. Cement and Concrete Research, 22(6), 1027-1038.

Gordon, L. E., Provis, J. L., & van Deventer, J. S. (2011). Durability of fly ash/GGBFS based geopolymers exposed to carbon capture solvents. Advances in Applied Ceramics, 110(8), 446-452.

Goretta, K. C., Chen, N., Gutierrez-Mora, F., Routbort, J. L., Lukey, G. C., & Van Deventer, J. S. J. (2004). Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag. Wear, 256(7), 714-719.

Han, Y. M., Jung, H. Y., & Seong, S. K. (2002). A Fundamental Study on the Steel Slag Aggregate for Concrete [J]. Geosystem Engineering, 5(2), 38-45.

Hanna, R. A., Barrie, P. J., Cheeseman, C. R., Hills, C. D., Buchler, P. M., & Perry, R. (1995). Solid state 29Si and 27Al NMR and FTIR study of cement pastes containing industrial wastes and organics. Cement and concrete research, 25(7), 1435-1444.

Heikal, M., Radwan, M. M., & Morsy, M. S. (2004). Influence of curing temperature on the Physico-mechanical, Characteristics of Calcium Aluminate Cement with air cooled Slag or water cooled Slag. Ceramics-Silikáty, 48(4), 185-196.

Izquierdo, M., Querol, X., Phillipart, C., Antenucci, D., & Towler, M. (2010). The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. Journal of hazardous materials, 176(1), 623-628..

Khater, H. M. (2013). Effect of cement kiln dust on geopolymer composition and its resistance to sulfate attack. Green Materials, 1(1), 36-46.

Kumar, S., Kumar, R., & Mehrotra, S. P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of materials science, 45(3), 607-615.

Lloyd, R. R., Provis, J. L., & van Deventer, J. S. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder. Journal of Materials Science, 44(2), 620-631..

Lloyd, R. R., Provis, J. L., & van Deventer, J. S. (2012). Acid resistance of inorganic polymer binders. 1. Corrosion rate. Materials and structures, 45(1-2), 1-14.

Lodeiro, I. G., Fernández-Jimenez, A., Palomo, A., & Macphee, D. E. (2010). Effect on fresh CSH gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 40(1), 27-32.

López, F. A., López-Delgado, A., & Balcázar, N. (1996). Physico-chemical and mineralogical properties of EAF and AOD slags. Afinidad LIII, 461:39–46.

Luxán, M. P., Sotolongo, R., Dorrego, F., & Herrero, E. (2000). Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace. Cement and Concrete Research, 30(4), 517-519.

Maslehuddin, M., Sharif, A. M., Shameem, M., Ibrahim, M., & Barry, M. S. (2003). Comparison of properties of steel slag and crushed limestone aggregate concretes. Construction and building materials, 17(2), 105-112.

Mitevski, N. (2000). The influence of technological parameters and the interface phenomena on the copper losses with the slag. Doctoral dissertation, PhD Thesis, Belgrade University, Technical Faculty in Bor.

Mollah, M. Y. A., Lu, F., & Cocke, D. L. (1998). An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V. Science of the total environment, 224(1), 57-68.

Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete research, 34(8), 1275-1296.

Panias, D., Giannopoulou, I. P., & Perraki, T. (2007). Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1), 246-254.

Provis, J. L., Myers, R. J., White, C. E., Rose, V., & van Deventer, J. S. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42(6), 855-864.

Puertas, F., & Fernández-Jiménez, A. (2003). Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cement and Concrete composites, 25(3), 287-292.

Puertas, F., Martı́nez-Ramı́rez, S., Alonso, S., & Vazquez, T. (2000). Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cement and Concrete Research, 30(10), 1625-1632.

Purdon, A. O. (1940). The action of alkalis on blast-furnace slag. Journal of the Society of Chemical Industry, 59(9), 191-202.

Ramonich, E. V., & Barra, M. (2001). Reactivity and expansion of electric arc furnace slag in their application in construction. Materiales de Construcción, 51(263-264), 137-148.

Rodríguez, E., Bernal, S., de Gutiérrez, R. M., & Puertas, F. (2008). Alternative concrete based on alkali-activated slag. Materiales de Construcción, 58(291), 53-67.

Sahmaran, M., Kasap, O., Duru, K., & Yaman, I. O. (2007). Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements. Cement and Concrete composites, 29(3), 159-167.

Smith, M. A., & Osborne, G. J. (1977). Slag/fly ash cements. World Cement Technology, 8(6):223–224.

Sugama, T., Brothers, L. E., & Van de Putte, T. R. (2005). Acid-resistant cements for geothermal wells: sodium silicate activated slag/fly ash blends. Advances in cement research, 17(2), 65-75.

Wallah, S., & Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer concrete: long-term properties. Research Report GC 2, Faculty of Engineering, Curtin University of Technology Perth, Australia.

Published
2017-08-27
How to Cite
khater, H. M. M. (2017). Impact of electric arc furnace slag on geopolymer composites exposed to sulphate solution. Journal of Building Materials and Structures, 4(1), 1-15. https://doi.org/10.34118/jbms.v4i1.26
Section
Original Articles