Deflection-Based Numerical Evaluation of Steel, Bamboo Fibre, and Carbon Fibre Polymer Reinforced Portal Frame

  • S.O Odeyemi Department of Civil & Environmental Engineering, Kwara State University Malete, Nigeria
  • M.A Olawale Department of Civil & Environmental Engineering, Kwara State University Malete, Nigeria
  • M.O Adisa Department of Civil & Environmental Engineering, Kwara State University Malete, Nigeria
  • O.D Atoyebi Department of Civil Engineering, Landmark University, Omu-Aran, Kwara State. Nigeria
  • Z.T Giwa Department of Civil & Environmental Engineering, Kwara State University Malete, Nigeria
Keywords: Abaqus, bamboo fibre, carbon fibre, concrete, deflection, steel

Abstract

Reinforced concrete, a flexible building material, enjoys worldwide acceptance. Yet, its environmental footprint, especially regarding steel production, is substantial. The extensive mining of iron ore contributes to global warming, prompting the quest for greener alternatives. Bamboo fibre and carbon fibre were employed in sustainable industrial and construction practices to fulfill tensile requirements in reinforced concrete, effectively managing lateral loads on structural elements. This study aims to compare numerically the deflection resistance of portal frames reinforced with steel, bamboo fibre, and carbon fibre polymers using Abaqus version 6.14. The replacement of steel with carbon fibre within the portal frame exhibited comparable effectiveness to that of utilizing steel, whereas the introduction of bamboo fibre was observed to yield relatively diminished efficacy. However, differences between the results for steel, bamboo fibre, and carbon fibre are minimal, and carbon fibre performs similarly to steel. The maximum lateral movement values are 2.43 mm for steel, 2.68 mm for bamboo fibre, and 2.39 mm for carbon fibre.

References

Akinpelu, M A, Gabriel, D. S., Salman, A. M., & Raheem, I. A. (2023). Results in Engineering Numerical study on the effect of different column shapes on punching shear behavior of flat slabs. Results in Engineering, 19(May), 1–11. https://doi.org/10.1016/j.rineng.2023.101345

Akinpelu, Mutiu Adelodun, Ibitoye, B. A., Odeyemi, S. O., & Olorede, K. O. (2021). Numerical Verification of Strut and Tie Models and Failure Modes of Reinforced Self-Compacting Concrete Deep Beams. International Journal of Engineering Research in Africa, 53(Vc), 76–100.

Al-Rousan, R., Haddad, R., & Al-Sa’di, K. (2013). Effect of sulfates on bond behavior between carbon fiber reinforced polymer sheets and concrete. Materials and Design, 43. https://doi.org/10.1016/j.matdes.2012.07.018

Alam, M. A., Hassan, A., & Muda, Z. C. (2016). Development of kenaf fibre reinforced polymer laminate for shear strengthening of reinforced concrete beam. Materials and Structures/Materiaux et Constructions, 49(3), 795–811. https://doi.org/10.1617/s11527-015-0539-0

Arutiunian, I., Dankevych, N., Arutiunian, Y., Saikov, D., Poltavets, M., Maranov, A., & Frolov, D. (2020). Development of a mathematical model for selection and rationale for making optimal construction decisions. Advances in Mathematics: Scientific Journal, 9(12). https://doi.org/10.37418/amsj.9.12.50

Arya, C. (2015). Eurocode 2: Design of concrete structures. In Design of Structural Elements. https://doi.org/10.1201/b18121-18

Awoyera, P. O., Nworgu, T. A., Shanmugam, B., Arunachalam, K. P., Mansouri, I., Romero, L. M. B., & Hu, J. W. (2021). Structural retrofitting of corroded reinforced concrete beams using bamboo fiber laminate. Materials, 14(21). https://doi.org/10.3390/ma14216711

Bhatt, P., & Goe, A. (2017). Carbon Fibres: Production, Properties and Potential Use. Material Science Research India, 14(1). https://doi.org/10.13005/msri/140109

Chen, W., Qin, G., Luo, F., Zhu, Y., Fu, G., Yao, S., & Ma, H. (2023). Experimental Study and Numerical Analysis on the Shear Resistance of Bamboo Fiber Reinforced Steel-Wire-Mesh BFRP Bar Concrete Beams. Materials, 16(9). https://doi.org/10.3390/ma16093446

Chen, Z., Chui, Y. H., Ni, C., & Xu, J. (2014). Seismic Response of Midrise Light Wood-Frame Buildings with Portal Frames. Journal of Structural Engineering, 140(8). https://doi.org/10.1061/(asce)st.1943-541x.0000882

Chin, S. C., Tee, K. F., Tong, F. S., Doh, S. I., & Gimbun, J. (2020). External strengthening of reinforced concrete beam with opening by bamboo fiber reinforced composites. Materials and Structures/Materiaux et Constructions, 53(6), 1–12.

Claisse, P. A. (2008). Corrosion of steel in concrete – understanding, investigation and repair 2nd edn. In Broomfield J. P. , Taylor & Francis, London, (Vols. 978-0–4153, Issues 3404–4).

Damgaard, A., Larsen, A. W., & Christensen, T. H. (2009). Recycling of metals: Accounting of greenhouse gases and global warming contributions. Waste Management and Research, 27(8), 773–780. https://doi.org/10.1177/0734242X09346838

Daoud, O. M. A., & Ahmed, B. N. (2022). Finite Element Analysis of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets. Journal of Building and Road Research, 23(1). https://doi.org/10.53332/jbrr.v23i1.746

Dassault Systèmes. (2021). Abaqus Unified FEA - SIMULIATM by Dassault Systèmes®. In Dassault Systèmes Simulia.

Frangopol, D. M., & Liu, M. (2007). Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost. Structure and Infrastructure Engineering, 3(1). https://doi.org/10.1080/15732470500253164

Gurbuz, T. (2018). Impact performance and mitigation of reinforced concrete columns.

Hafizah, N. A. K., Bhutta, M. A. R., Jamaludin, M. Y., Warid, M. H., Ismail, M., Rahman, M. S., Yunus, I., & Azman, M. (2014). Kenaf fiber reinforced polymer composites for strengthening RC beams. Journal of Advanced Concrete Technology, 12(6). https://doi.org/10.3151/jact.12.167

Ibrahim, Y. E., Ismail, M. A., & Nabil, M. (2017). Response of Reinforced Concrete Frame Structures under Blast Loading. Procedia Engineering, 171. https://doi.org/10.1016/j.proeng.2017.01.384

Krucinska, I., & Stypka, T. (1991). Direct measurement of the axial poisson’s ratio of single carbon fibres. Composites Science and Technology, 41(1). https://doi.org/10.1016/0266-3538(91)90049-U

Li, C., Li, P., Zhong, B., & Wen, B. (2019). Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions. Nonlinear Dynamics, 95(3). https://doi.org/10.1007/s11071-018-4667-2

Li, G. Q., Ji, W., Feng, C. Y., Wang, Y., & Lou, G. B. (2021). Experimental and numerical study on collapse modes of single span steel portal frames under fire. Engineering Structures, 245. https://doi.org/10.1016/j.engstruct.2021.112968

Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. Agriculture and Mechanical College, Master of.

Londhe, R. S. (2010). Experimental investigation on shear strength of sfrc beams reinforced with longitudinal tension steel rebars. Asian Journal of Civil Engineering, 11(3).

Long, X., & Lee, C. K. (2015). Modelling of two dimensional reinforced concrete beam-column joints subjected to monotonic loading. Advances in Structural Engineering, 18(9). https://doi.org/10.1260/1369-4332.18.9.1461

Nagavally, R. R. (2016). Composite Materials - History, Types, Fabrication Techniques, Advantages, and Applications. International Journal of Mechanical And Production Engineering, 2.

Nayak, A., Bajaj, A. S., Jain, A., Khandelwal, A., & Tiwari, H. (2013). Replacement of steel by bamboo reinforcement. Academia.EduA Nayak, AS Bajaj, A Jain, A Khandelwal, H TiwariIOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2013•academia.Edu, 8(1), 50–61.

Nidheesh, P. V., & Kumar, M. S. (2019). An overview of environmental sustainability in cement and steel production. In Journal of Cleaner Production (Vol. 231). https://doi.org/10.1016/j.jclepro.2019.05.251

Nwankwo, C. O., & Ede, A. N. (2020). Flexural strengthening of reinforced concrete beam using a natural fibre reinforced polymer laminate: an experimental and numerical study. Materials and Structures/Materiaux et Constructions, 53(6). https://doi.org/10.1617/s11527-020-01573-x

Odeyemi, S. O., Abdulwahab, R., Akinpelu, M. A., Afolabi, R., & Atoyebi, O. D. (2022). Strength Properties of Steel and Bamboo Reinforced Concrete Containing Quarry Dust , Rice Husk Ash and Guinea Corn Husk Ash. Iranian (Iranica) Journal of Energy & Environment, 13(4), 354–362. https://doi.org/10.5829/ijee.2022.13.04.05

Odeyemi, S. O., Adisa, M. O., Atoyebi, O. D., Adesina, A., Ahmed, L., & Adeniyi, O. I. (2023). Variability Analysis of Compressive and Flexural Performance of Coconut Fibre Reinforced Self-Compacting Concrete. International Journal of Engineering Research in Africa, 66, 19–27. https://doi.org/10.4028/p-kcF6YL

Pavan Venkata Naga Sai, B., Agarapu, D. C. K., & Eluru, A. (2020). Assay of moment resisting precast and monolithic frames using ABAQUS software. Materials Today: Proceedings, 33. https://doi.org/10.1016/j.matpr.2020.03.735

Pouladi, P., Ronaldson, J., Clifton, G. C., Ingham, J. M., Wrzesien, A. M., & Lim, J. B. P. (2019). Finite-element assisted design of eaves joint of cold-formed steel portal frames having single channel-sections. Structures, 20. https://doi.org/10.1016/j.istruc.2019.05.009

Rajesh Kumar, K., Karthik, S., Ramamohan, R., Awoyera, P. O., Gobinath, R., Shivakrishna, A., & Murthi, P. (2019). Shear resistance of portal frame reinforced with Bamboo and steel rebar: Experimental and numerical evaluation. International Journal of Recent Technology and Engineering, 8(1).

Ramaswamy, S. N., & Mathew, A. (2019). Performance evaluation of bamboo reinforced concrete beam. International Journal of Civil Engineering and Technology, 10(1), 2512–2523.

Reda Taha, M. M., El-Dieb, A. S., Abd El-Wahab, M. A., & Abdel-Hameed, M. E. (2008). Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. Journal of Materials in Civil Engineering, 20(10). https://doi.org/10.1061/(asce)0899-1561(2008)20:10(640)

Sakthivel, M. S., Bhuvaneshwaran, C., Dinesh, M., Gokul, N., & Rajesh, B. (2019). Management Errors in Construction Project. International Journal of Scientific Research and Review, 07(03).

Santos, P. M. D., & Júlio, E. N. B. S. (2010). Assessment of the Shear Strength between Concrete Layers. 8th Fib PhD Symposium in Kgs. Lyngby, Denmark, June 20-23.

Sen, T., & Reddy, H. N. J. (2013). Pretreatment of woven jute FRP composite and its use in strengthening of reinforced concrete beams in flexure. Advances in Materials Science and Engineering, 2013. https://doi.org/10.1155/2013/128158

Shames, I. H. (2020). Linear Elastic Behavior. In Elastic And Inelastic Stress Analysis. https://doi.org/10.1201/b16599-8

Tošić, N., Pecić, N., Poliotti, M., Marí, A., Torres, L., & Dragaš, J. (2021). Extension of the ζ-method for calculating deflections of two-way slabs based on linear elastic finite element analysis. Structural Concrete, 22(3). https://doi.org/10.1002/suco.202000558

Toutanji, H., & Ortiz, G. (2001). The effect of surface preparation on the bond interface between FRP sheets and concrete members. Composite Structures, 53(4), 457–462. https://doi.org/10.1016/S0263-8223(01)00057-5

Vizini, V. O. S., & Futai, M. M. (2021). Modified direct shear test for determining shear strength of rock and concrete. Geotechnical Testing Journal, 44(6). https://doi.org/10.1520/GTJ20200185

Yu, X., Tao, Z., Song, T. Y., & Pan, Z. (2016). Performance of concrete made with steel slag and waste glass. Construction and Building Materials, 114(November 2017), 737–746. https://doi.org/10.1016/j.conbuildmat.2016.03.217

Zahmi, S. Al, Alhammadi, S., Elhassan, A., & Ahmed, W. (2022). Carbon Fiber/PLA Recycled Composite. Polymers, 14(11). https://doi.org/10.3390/polym14112194

Zhang Kai, Fangxin Wang, Wenyan Liang, Zhenqing Wang, Zhiwei Duan, B. Y. (2018). Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. https://doi.org/10.3390/polym10060608

Published
2024-06-30
How to Cite
Odeyemi , S., Olawale , M., Adisa , M., Atoyebi , O., & Giwa , Z. (2024). Deflection-Based Numerical Evaluation of Steel, Bamboo Fibre, and Carbon Fibre Polymer Reinforced Portal Frame. Journal of Building Materials and Structures, 11(1), 47-60. https://doi.org/10.34118/jbms.v11i1.3952
Section
Original Articles

Most read articles by the same author(s)