Durability Performance of Polymer Composite Reinforced with Ceiba pentandra Wood Particles

  • Aina Kehinde Sesan Forestry Research Institute of Nigeria, P.M.B. 5054, Jericho, Ibadan, Oyo State, Nigeria.
  • Olaniran Samuel Oluyinka University of Göttingen, Büsgenweg, Germany.
  • Falemara Babajide Charles Forestry Research Institute of Nigeria, P.M.B. 5054, Jericho, Ibadan, Oyo State, Nigeria.
  • Bolarinwa Olayiwola Yetunde Forestry Research Institute of Nigeria, P.M.B. 5054, Jericho, Ibadan, Oyo State, Nigeria.
  • Owolabi Temitope Olayemi Federal University of Technology, Akure, Ondo State, Nigeria
  • Olufemi Babatola Federal University of Technology, Akure, Ondo State, Nigeria
Keywords: Dimensional stability, Environmental Sustainability, Polymer, Recycling, Strength & testing of materials

Abstract

The study investigated the effects of Coptotermes curvignathus termites on the durability and strength properties of wood plastic composites produced from recycled polythene bags and Ceiba pentandra wood particles. The wood particles were proportionately mixed with the polyethylene powder at ratios 40/60, 50/50 and 60/40 (w /w dry basis). The composites were produced using the single screw extruder and compounding method. Some of these composites were exposed to termite attack (Coptotermes curvignathus) attack at a timber graveyard. The composite samples, both unexposed and exposed to termite infestation, were subjected to durability and strength assessment tests. The results revealed composite board densities ranging from 781.0 kg/m3 to 810.6 kg/m3. Strength values ranged from 1087.8 N/mm² to 4320.0 N/mm² for flexural modulus, 43.7 N/mm² to 59.1 N/mm² for flexural strength, and 18.4 N/mm² to 32.6 N/mm² for compressive strength. The wood polyethylene composite made at 50/50 ratio had the lowest values for all properties tested both before and after termite exposure. The wood/polyethylene ratio significantly influence the weight, density, flexural modulus and compressive strength of the composites after termite exposure under a tropical climate. This study concluded that wood polyethylene composite (WPC) reinforced with Ceiba pentandra particles are highly durable. Specifically, WPC produced at a 40/60 wood/plastic ratio is recommended for structural applications in termite-prone areas, as it met the certified standard values of < 3.52 from SNI 01-7207-2006 and ASTM D3345 for graveyard tests.

References

Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M., & Muhammad S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25, 7287-7298. https://doi.org/10.1007/s11356-018-1234-9.

Aina, K.S., Oluyege, O.A., & Fuwape, J.A. (2017). Effects of Weathering Exposure on Mechanical Properties of Wood Plastic Composites. Journal of tropical forest science, 33, 41-49.

American Society for Testing and Materials. 1991. ASTM D638-90 1991. Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA.

American Society for Testing and Materials. 2002. ASTM D 790-00. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA.

ASTM D3345 (2008) Standard test method for laboratory evaluation of wood and other cellulosic materials for resistance to termites. American Society for Testing and Materials International, PA, USA

Atuanya, C.U., Edokpia, R.O., & Aigbodion, V.S. (2014). The physio-mechanical properties of recycled low density polyethylene (RLDPE)/bean pod ash particulate composites. Results in Physics, 4: 88-95. https://doi.org/10.1016/j.rinp.2014.05.003.

Aydemir, D., Alsan, M., Can, A., Altuntas, E., & Sivrikaya, H. (2019). Accelerated weathering and decay resistance of heat-treated wood reinforced polypropylene composites. DRVNA Industrija, 70(3), 279–285. https://doi.org/10.5552/drvind.2019.1851.

Bhaskar, K., Jayabalakrishnan, D., Vinoth Kumar, M., Sendilvelan, S., & Prabhahar, M. (2020). Analysis on mechanical properties of wood plastic composite. Materials Today: Proceedings, 45. 5886-5891. https://doi.org/10.1016/j.matpr.2020.08.570.

Błędzki, A.K., & Faruk, O. (2004). Wood fiber reinforced polypropylene composites: Compression and injection molding process, Polymer-Plastics Technology and Engineering, 43(3), 871-888. https://doi.org/10.1081/PPT-120038068.

Borysiuk, P., Wilkowski, J., Krajewski, K., Auriga, R., Skomorucha, A., & Auriga, A. (2020). Selected properties of flat-pressed wood-polymer composites for high humidity conditions, BioResources, 15(3), 5141-5155. https://doi.org/10.15376/biores.15.3.5141-5155.

Chen, Y., Stark, N.M., Tshabalala, M.A., Gao, J., & Fan, Y. (2016). Weathering characteristics of wood plastic composites reinforced with extracted or de-lignified wood flour. Materials 9(8), 610. https://doi.org/10.3390/ma9080610.

Chen, Y., Tshabalala, M.A., Gao, J., Stark, N.M., & Fan, Y. (2014). Color and surface chemistry changes of extracted wood flour after heating at 120˚C. Wood Science and Technology, 48, 137–150. https://doi.org/10.1007/s00226-013-0582-3.

Cui, Y., Lee, S., Noruziaan, B., Cheung, M., & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials, Composites Part A: Applied Science and Manufacturing, 39(4), 655-661. https://doi.org/10.1016/j.compositesa.2007.10.017.

Clemons, C. (2002). Wood-plastic composites in the United States: The interfacing of two industries. Forest products journal. 52(6), 10-18.

Delviawan, A, Suzuki, S., Kojima, Y., Kobori, H. (2019). The influence of filler characteristics on the physical and mechanical properties of wood plastic composite (s). Reviews in Agricultural Science, 7, 1-9. https://doi.org/10.7831/ras.7.1.

Duvall, C.S. (2011). Ceiba pentandra (L.) Gaertn. Record from PROTA4U. Brink, M. & Achigan-Dako, E.G. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. Accessed on the 25th of October 2024 from http://www.prota4u.org.

Egbuhuzor, M., Umunankwe, C., & Ogbobe, P. (2022). Chapter 5. Polyethylenes: a vital recyclable polymer. Waste Material Recycling in the Circular Economy: Challenges and Developments, IntechOpen, 95. https://doi.org/10.5772/intechopen.102836.

Fabiyi, J.S. and McDonald, A.G. (2010) Effect of Wood Species on Property and Weathering Performance of Wood Plastic Composites. Composites Part A, 41, 1434-1440. http://dx.doi.org/10.1016/j.compositesa.2010.06.004.

Falemara, B.C., Owoyemi, J.M., & Olufemi, B. (2012). Physical Properties of Ten Selected Indigenous Wood Species in Akure, Ondo State, Nigeria. Journal of Sustainable Environmental Management. 4, 16-23.

Falk, R.H., Vos, D., & Cramer, S.M. (1999). The comparative performance of wood fiber-plastic and wood-based panels. Accessed on the 21st of January, 2020 from https://www.fpl.fs.fed.us/documnts/pdf1999/falk99f.pdf.

Flores-Hernández, M.A., Torres-Rendón, J.G., Jiménez-Amezcua, R.M., Lomelí-Ramírez, M.G., Fuentes-Talavera, F.J., Silva-Guzmán, J.A., & García Enriquez, S. (2017). Studies on mechanical performance of wood-plastic composites: Polystyrene-Eucalyptus globulus Labill, BioResources, 12(3), 6392-6404. https://doi.org/10.15376/biores.12.3.6392-6404.

Gao, X., Li, Q., Cheng, W., Han, G., & Xuan, L. (2018). Effects of moisture content, wood species, and form of raw materials on fiber morphology and mechanical properties of wood fiber-HDPE composites. Polymer Composites 39(9), 3236-3246. https://doi.org/10.1002/pc.24336.

Gardner, D.J., & Bozo, A. (2018). Ten-year field study of wood plastic composite in Santiago, Chile; Biological, Mechanical and Physical property performance. Maderas. Ciencia y tecnología, 20(2), 257 – 266. http://dx.doi.org/10.4067/S0718-221X2018005002901.

Gardner, D.J., Han, Y., & Wang, L. (2015). Wood–Plastic Composite Technology. Current Forestry Reports, 1, 139–150. https://doi.org/10.1007/s40725-015-0016-6.

Guidigo, J., Molina, S., Adjovi, E.C., Merlin, A., Andre, D., & Tagne, M.S. (2017). Polyethylene low and high density polyethylene terephthalate and polypropylene blend as matrices for wood flour-plastic composites. International Journal of Science and Research, 6(1), 1069–1074. https://doi.org/10.21275/ART20164296.

Gulitah. V., & Liew, K.C. (2019). Morpho-mechanical properties of wood fiber plastic composite (WFPC) based on three different recycled plastic codes. International Journal of Biobased Plastics 1(1), 22–30. https://doi.org/10.1080/24759651.2019.1631242.

Gulitah, V., & Liew, K.C. (2018). Effect of plastic content ratio on the mechanical properties of wood-plastic composite (WPC) made from three different recycled plastic and acacia fibres. Transactions on Science and Technology, 5(2), 184–189.

H’ng, P.S., Lee, A.N., Hang, C.M., Lee, S.H., Khaline, A., & Paridah, M.T. (2011). Biological Durability of Injection Moulded Wood Plastic Composites boards. Journal of Applied Sciences, 11(2), 384-388. https://doi.org/10.3923/jas.2011.384.388.

Hadi, A.J., Yusoh, K.B., Hadi, G.J., Najmuldeen, G.F., & Hasany, S.F. (2019). Modified correlation for low-density polyethylene (LDPE) solubility in several organic solvents. Theoretical Foundations of Chemical Engineering, 53, 115–121. https://doi.org/10.1134/S0040579519010068.

Kumar, A., Dalal, J., Poonia, A., Kumari, A., Lata, P., Sharma, R., & Verma, N. (2022). Cost effective and sustainable plastics bio-degradation using microbiota. Shodhsamhita 9(6), 80-95.

Kumar, A., Poonia, A., Sharma, R., Jangra, M., Sehrawat, R., & Sansanwal, R. (2020). Termite gut: home to microbiome. Uttar Pradesh Journal of Zoology, 41(22), 9-23. https://mbimph.com/index.php/UPJOZ/article/view/1750.

Kuo, P.Y., Wang, S.Y., Chen, J.H., Hsueh, H.C., & Tsai, M.J. (2009). Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Materials & Design, 30(9), 3489-3496. https://doi.org/10.1016/j.matdes.2009.03.012.

Lenz, M., Lee, C., Lacey, M.J., Yoshimura, T., & Tsunoda, K. (2011). The potential and limits of termites (Isoptera) as de-composers of waste paper products. Journal of economic entomology, 104(1), 232-242. https://doi.org/10.1603/ec10155.

Li, W.C., Tse, H.F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of The Total Environment, 566-567, 333-349. https://doi.org/10.1016/j.scitotenv.2016.05.084.

Lopez, Y.M., Gonçalves, F.G., Paes, J.B., Gustave, D., Nantet, A.C., & Sales, T.J. (2020). Resistance of wood plastic compo-site produced by compression to termites Nasutitermes corniger (Motsch.) and Cryptotermes brevis (Walker). International Biodeterioration & Biodegradation, 152, 104998. https://doi.org/10.1016/j.ibiod.2020.104998.

López‐Naranjo, E.J., Alzate‐Gaviria, L.M., Hernández‐Zárate, G., Reyes‐Trujeque, J., CupulManzano, C.V., & Cruz‐Estrada, R.H. (2013). Effect of biological degradation by termites on the flexural properties of pinewood residue/recycled high‐density polyethylene composites. Journal of Applied Polymer Science, 128 (5), 2595-2603. https://doi.org/10.1002/app.38212.

Martinez-Lopez, Y., Paes, J.B., Gonçalves, F.G., Martínez-Rodríguez, E., & Medeiros, P.N.D. (2020). Physico-mechanical properties of wood-plastic produced with forest species and thermoplastic materials. Floresta e Ambiente, 27(2), e20170736. https://doi.org/10.1590/2179-8087.073617.

Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K., Krause, C., & Wolcott. M. (2008). Effect of fiber length on processing and properties of extruded wood‐fiber/HDPE composites. Journal of Applied Polymer Science, 110(2), 1085-1092. https://doi.org/10.1002/app.28720.

Morrell, J.J., Stark, N.M., Pendleton, D.E., & McDonald, A.G. (2010). Durability of wood plastic composite. In 10th Interna-tional Conference on Wood & Biofiber Plastic Composites and Cellulose Nanocomposites Symposium, Forest Products Society. Madison, Wisconsin, USA. May 11–13, 2010, 71-75.

Nuryawan, A., Hutauruk, N.O., Purba, E.Y.S., Masruchin, N., Batubara, R., Risnasari, I., & McKay, D. (2020). Properties of wood composite plastics made from predominant Low-Density Polyethylene (LDPE) plastics and their degradability in nature. PloS one 15(8), e0236406. https://doi.org/10.1371/journal.pone.0236406.

Oladejo, K.O., & Omoniyi, T.E. (2019). Potentials of Wood Plastic Composite Boards from Funtumia africana (IRE) Sawdust with Recycled Polyethylene Terephthalate (PET) Chips for Building Applications. Specialty Journal of Engineering and Applied Science, 4(3), 59-68.

Petchwattana, N. (2018). Wood-plastic biocomposites prepared from recycled high density polyethylene bottles and wood flour: a comparative study with virgin high density polyethylene/wood flour composites. Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics. Tokyo, Japan; 109–112. https://doi.org/10.1145/3180382.3180393.

Rahman, K.S., Islam, M.N., Rahman, M.M., Hannan, M.O., Dungani, R., & Khalil, H.P.S. (2013). Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. SpringerPlus 2, 629. https://doi.org/10.1186/2193-1801-2-629.

Reyes, G., Brown, S., Chapman, J., & Lugo, A.E. (1992). Wood densities of tropical tree species (Vol. 88). Gen. Tech. Rep. New Orlans. LA: US Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15p. https://doi.org/10.2737/SO-GTR-88.

Schauwecker, C., Morrell, J.J., McDonald, A.G., & Fabiyi, J.S. (2006). Degradation of a Wood Plastic Composite exposed under tropical conditions. Forest Products Journal, 56(11-12), 123–9.

Seachtling, H.., & Woebcken, W. (1995). International Plastics Handbook 3rd edition, Hanser Gardner Publications, Cincinnati, OH. 644p

Sellers, T., Miller, G.D., & Katabian, M. (2000). Recycled thermoplastics reinforced with renewable lignocellulosic materials, Forest Products Journal 50(5), 24-28.

Shakouri, B., Behravesh, A.H., Zolfaghari, A., & Golzar, M. (2009). Effect of die pressure on mechanical properties of wood plastic composite in extrusion process. Journal of Thermoplastic Composite Materials 22(6), 605–616. https://doi.org/10.1177/089270570910.

Slaughter, A.E. (2004). Design and fatigue of a structural wood–plastic composites. Master thesis, Washington State University p161.

SNI 01–7207, 2006. Durability Test for Wood and Wood Products against Wood Destroying Organisms. In Bahasa Indonesia. National Standardization Agency of Indonesia. Jakarta: Indonesia, 2006.

Stark, N.M, & Berger, M.J. (1997). Effect of species and particle size on properties of wood-flour-filled polypropylene composites, Accessed on the 21st of January, 2020 from https://pdfs.semanticscholar.org/9011/db0f78822ad3c345ccd7cc6af8fb584eab00.pdf.

Stephan, I., & Plarre, R. (2008). Biodeterioration-tests on wood/plastic composites. Chemistry Today 26(3), 20–22.

Tascioglu, C., Yoshimura, T., & Tsunoda, K. (2013). Biological performance of Wood Plastic Composites containing Zinc borate: Laboratory and 3-year field test results. Composites Part B: Engineering, 51, 185 -190. https://doi.org/10.1016/j.compositesb.2013.03.034.

Thamil, C.T. (2016). Isolation and identification of polyethylene biodegradation bacterial from the guts of plastic bags - eating damp wood termites. Life Science Archives, 2(2), 490-499.7

Ticky, R.J. (2004). Industrial standard for wooden plastic in USA. Wood Industry 59, 348–9.

Turku, I., Kärki, T., & Puurtinen, A. (2018). Durability of wood plastic composites manufactured from recycled plastic. Heliyon, 4(3), e00559. https://doi.org/10.1016/j.heliyon.2018.e00559.

Verma, R., Vinoda, K.S., Papireddy, M., & Gowda, A.N. (2016). Toxic pollutants from plastic waste-a review. Procedia Environmental Sciences 35, 701-708. https://doi.org/10.1016/j.proenv.2016.07.069.

Yang, J., Yang, Y., Wu, W.M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23), 13776-13784. https://doi.org/10.1021/es504038a.

Yang, X.L., Wang, S.H., Gong, Y., & Yang, Z.G. (2021). Effect of biological degradation by termites on the abnormal leak-age of buried HDPE pipes. Engineering Failure Analysis, 124, 105367. https://doi.org/10.1016/j.engfailanal.2021.105367.

Yu, K., Feng, J., Zhong, T., Zheng, Z., & Chen, T. (2015). Effects of volatile chemical components of wood species on mold growth susceptibility and termite attack resistant of wood plastic composites. International Biodeterioration & Biodegradation, 100, 106-115. https://doi.org/10.1016/j.ibiod.2015.02.002.

Zimmermann, M.V.G., Turella, T.C., Santana, R.M.C., & Zattera, A.J. (2014). The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites. Materials and Design, 57: 660-666. https://doi.org/10.1016/j.matdes.2014.01.010.

Published
2025-06-30
How to Cite
Kehinde Sesan, A., Samuel Oluyinka , O., Babajide Charles , F., Olayiwola Yetunde , B., Temitope Olayemi , O., & Babatola , O. (2025). Durability Performance of Polymer Composite Reinforced with Ceiba pentandra Wood Particles. Journal of Building Materials and Structures, 12(1), 17-34. https://doi.org/10.34118/jbms.v12i1.4145
Section
Original Articles