Mechanical behavior and durability of latex modified mortars

  • Yacine Benali EOLE Laboratory, Faculty of Technology, University Abou Bekr Belkaid, Tlemcen, Algeria
  • Fouad Ghomari EOLE Laboratory, Faculty of Technology, University Abou Bekr Belkaid, Tlemcen, Algeria
Keywords: Latex modified mortars, fluidity, absorption, strength, adhesion

Abstract

This article summarizes the results of an experimental program developed on latex-modified mortars. Fluidity tests, compressive strength tests, flexural strength tests, water absorption tests, adhesion tests on clay bricks and cementitious substrates were carried out. The test bodies were prepared by the pre-wetting method with different latex contents while partially substituting Portland cement by two types of latex: Styrene-Butadiene (SBR) and Styrene Acrylic (SA). In addition, samples of ordinary mortars are made in parallel as references.

The experimental results showed that the substitution of cement in mortars produced a notable improvement on fluidity and adhesion. In the case of clay substrates, a cohesive failure in the support above 10% substitution has been reported, whereas the rupture is always at the interface for all the mixtures tested on cementitious substrates. An improvement was also noted on the flexural tensile strength beyond 60 days. On the other hand, the compressive strength of the polymer mortars decreased with the substitution rate of cement for all the maturities studied. As for the absorption of water, the results show a clear reduction in the percentage of water absorption by increasing the substitution rate

References

ACI Committee 548. (2003). Polymer-modified concrete (pp. 40). Farmington Hills (MI): American Concrete Institute.

Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., & Ibrahim, M. (2003). Mechanical properties and durability characteristics of polymer- and cement-based repair materials. Cement & Concrete Composites, 25, 527–537.

Amaral, M. d. (2004). Assessing the environmental cost of recent progresses in emulsion polymerization. Reactive & Functional Polymers, 58, 197–202.

ASTM C373-88. (2006). Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products (pp. 2). West Conshohocken (PA): ASTM International.

ASTM C1437-07. (2007). Standard test method for flow of hydraulic cement mortar (pp. 2): West Conshohocken (PA): ASTM International.

Balayssac, J. P., Nicot, P., Ruot, B., Devès, O., & Détriché, C. H. (2011). Influence of admixtures on the cracking sensitivity of mortar layers applied to a mineral substrate. Construction and Building Materials, 25, 2828–2836.

Barluenga, G., and Hernandez-Olivares, F. (2004). SBR latex modified mortar rheology and mechanical behaviour. Cement and Concrete Research, 34, 527–535.

Benali, Y., and Ghomari, F. (2017). Latex influence on the mechanical behavior and durability of cementitious materials. Journal of Adhesion Science and Technology, 31(3), 219–241.

Boukli Hacene, S. M. E. A. (2009). Contribution a l'étude de la résistance caractéristique des bétons de la région de Tlemcen [ Contribution to the study of the characteristic strength of the concrete in the region of Tlemcen]. [PhD thesis], University of Abou Bekr Belkaid, Algeria.

BS EN196-1. (2005). Methods of testing cement – Part 1: determination of strength (pp. 28). London: Br. Stand Institution.

Courard, L. (1998). Contribution à l’analyse des paramètres influençant la création de l’interface entre un béton et un système de réparation [Contribution to the analysis of the parameters influencing the creation of the interface between a concrete and a repair system]. [PhD thesis], University of Liège, Belgium.

Courard, L., and Bissonnette, B. (2004). Essai dérivé de l’essai d’adhérence pour la caractérisation de la cohésion superficielle des supports en béton dans les travaux de réparation : analyse des paramètres d’essai [Adaptation of the pull-off test for the evaluation of the superficial cohesion of concrete substrates in repair works: analysis of the test parameters]. Materials and Structures, 37, 342–350.

Courard, L., Lenaers, J.-F., Michel, F., & Garbacz, A. (2011). Saturation level of the superficial zone of concrete and adhesion of repair systems. Construction and Building Materials, 25(5), 2488-2494.

Diab, A. M., Elyamany, H. E., & Ali, A. H. (2013). Experimental investigation of the effect of latex solid/water ratio on latex modified co-matrix mechanical properties. Alexandria Engineering Journal, 52, 83–98.

Diab, A. M., Elyamany, H. E., & Ali, A. H. (2014). The participation ratios of cement matrix and latex network in latex cement co-matrix strength. Alexandria Engineering Journal, 53, 309–317.

Erdmenger, T., Guerrero-Sanchez, C., Vitz, J., Hoogenbooma, R., & Schubert, U. S. (2010). Recent developments in the utilization of green solvents in polymer chemistry. Chemical Society Reviews, 39(8), 3317–3333.

Eren, F., Gödek, E., Keskinates, M., Tosun-Felekoglu, K., & Felekoglu, B. (2017). Effects of latex modification on fresh state consistency, short term strength and long term transport properties of cement mortars. Construction and Building Materials, 133, 226–233.

Folic, R. J., and Radonjanin, V. S. (1998). Experimental Research on Polymer-Modified Concrete. ACI Materials Journal, 95(4), 463-468.

Gemert, D. V., Czarnecki, L., Maultzsch, M., Schorn, H., Beeldens, A., Łukowski, P., & Knapen, E. (2005). Cement concrete and concrete–polymer composites: Two merging worlds. A report from 11th ICPIC Congress in Berlin, 2004. Cement & Concrete Composites, 25, 926–933.

Kim, J.-H., & Robertson, R. E. (1997). Prevention of air void formation in polymer-modified cement mortar by pre-wetting. Cement and Concrete Research, 27(2), 171-176.

Mansur, A. A. P., Nascimento, O. L. d., & Mansur, H. S. (2009). Physico-chemical characterization of EVA-modified mortar and porcelain tiles interfaces. Cement and Concrete Research, 39, 1199–1208.

Mirza, J., Durand, B., Bhutta, A. R., & Tahir, M. M. (2014). Preferred test methods to select suitable surface repair materials in severe climates. Construction and Building Materials, 50, 692–698.

Momayez, A., Ehsani, M. R., Ramezanianpour, A. A., & Rajaie, H. (2005). Comparison of methods for evaluating bond strength between concrete substrate and repair materials. Cement and Concrete Research, 35, 748–757.

Ngassam, I. L. T. (2013). Durabilité des réparations des ouvrages d’art en Béton [Durability of repairing concrete structures]. [Phd thesis]. University of Paris-Est, France.

Ohama, Y. (1995). Handbook of polymer-modified concrete and mortars. properties and process technology: Park Ridge (NJ): Noyes Publications.

Parghi, A., & Alam, M. S. (2016). Effects of curing regimes on the mechanical properties and durability of polymer-modified mortars – an experimental investigation. Journal of Sustainable Cement-Based Materials, 5(5), 324-347.

Pierre, N. (2008). Interactions mortier-support : éléments déterminants des performances et de [Mortarsupport interactions: determinants element of performance and adhesion of mortar]. [Phd thesis]. University of Toulouse, France.

Ramli, M., and Tabassi, A. A. (2012a). Effects of Different Curing Regimes on Engineering Properties of Polymer-Modified Mortar. Journal of Materials in Civil Engineering, 24, 468-478.

Ramli, M., and Tabassi, A. A. (2012b). Mechanical behaviour of polymer-modified ferrocement under different exposure conditions: An experimental study. Composites: Part B, 43, 447–456.

Ramli, M., Tabassi, A. A., & Hoe, K. W. (2013). Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions. Composites: Part B, 55, 221–233.

Said, A. M., Quiroz, O. I., Hatchett, D. W., & Elgawady, M. (2016). Latex-modified concrete overlays using waste paint. Construction and Building Materials, 123, 191–197.

Sikora, P., Łukowski, P., Cendrowski, K., Horszczaruk, E., & Mijowskab, E. (2015). The effect of nanosilica on the mechanical properties of polymercement composites (PCC). Procedia Engineering, 108, 139 – 145.

Thickett, S. C., & Gilbert, R. G. (2007). Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 48, 6965-6991.

Wang, R., Wang, P.-M., & Li, X.-G. (2005). Physical and mechanical properties of styrene–butadiene rubber emulsion modified cement mortars. Cement and Concrete Research, 35, 900– 906.

Wang, R., & Wang, P. (2010). Function of styrene-acrylic ester copolymer latex in cement mortar. Materials and Structures, 43, 443–451.

Xu, F., Peng, C., Zhu, J., & Chen, J. (2016). Design and evaluation of polyester fiber and SBR latex compound-modified perlite mortar with rubber powder. Construction and Building Materials, 127, 751–761.

Published
2018-06-04
How to Cite
Benali, Y., & Ghomari, F. (2018). Mechanical behavior and durability of latex modified mortars. Journal of Building Materials and Structures, 5(1), 110-126. https://doi.org/10.34118/jbms.v5i1.50
Section
Original Articles