A numerical simulation to achieve a high efficiency: Influence and optimization of thickness and doping concentration of emitter layer of heterojunction solar cells
Abstract
HIT silicon hetero-junction TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/BSF solar cells attract special interest due to their suitability and high efficiencies, in this study, we present a numerical simulation of the influence of emitter layer on the performance of silicon proposed heterojunction solar cells . The basic parameters of heterojunction solar cells, such as layer thickness, doping concentration, interface defect density, back surface field (BSF) layer, are important factors that influence the carrier transport properties and the performance of the solar cells.. Thickness and doping concentration of the emitter layer are optimized here. With optimal parameters, high simulated solar cell characteristics can be achieved in terms of conversion efficiency (η=25.62%), open circuit potential (VOC= 744 mV), short circuit current density (JSC= 42.43 mA/cm2) and fill factor (FF=83.7%).The Automat for Simulation of Heterostructures (AFORS-HET) program is used.
References
K.Masuko,M.Shigematsu,TaikiHashiguchi,D.Fujishima, M.Kai, N.Yoshimura , T.Yamaguchi, Y.Ichihashi,T, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE Journal of Photovoltaics; 4(2014)1433-1435.
A. Goebtzberger and V.U. Hoffman, Photovoltaic Solar Energy Generation, N.Y., Springer (2005).
L.Jian, H.Shihua, and H.Lü,Simulation of a highefficiency silicon-based heterojunction solar cell, Journal of Semiconductors, 36(2015) 044010/1-8.
M. Izzi, M. Tucci and L. Serenelli, TCO optimization in Si heterojunction solar cells on p-type wafers with nSiOxemitter, EnergyProcedia, 84 (2015) 134–140.
L. Zhao,C. L. Zhou,H. L. Li,H. W. Diao,W. J. Wang, Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation.PhysicaStatusSolidi A, Applications and Materials Science, (2008)1215–1221.
L. Zhao, C. L. Zhou, H. L. Li, H.W.Diao and W.J.WangDesign optimization of bifacialHIT solar cells on p-type silicon substrates by simulation. Sol Energy Materials and Solar Cells, 92 (2008) 673-681.
N. Dwivedi, S. Kumar, A. Bisht, K. Patel and S.Sudhakar, Simulation approach for optimization of device structure and thickness of HIT solar cells for to achieve to 27% efficiency. Solar Energy, 88, (2013) 31-41.
W. Lisheng, C. Fengxiang and A. Yu, Simulation of high efficiency heterojunction solar cells with AFORS-HET. Journal of Physics: ConferenceSeries,276 (2011) 012177/1-9.
Q. Liu, X.J. Ye, C. Liu C, M-B. Ming, Performance of bifacial HIT solar cells on n-type silicon substrates. OptoelectronicsLetters, 6 (2010) 108-111.
R.Stangl, A.Froitzheim , M.Kriegel ,T.Brammer, S.Kirste , L.Elstner , H.Stiebig, Afors-HET, A numerical pc-program for simulation of (thin film) heterojunction solar cells, version 2.0 (open-source on demand), to be distributed for public Hahn-Meitner-Institut Berlin (HMI), Abteilung Silizium Photovoltaik, Kekulé-Str. 5, D-12489 Berlin, Germany
M. Sharma, S. Kumar, N. Dwivedi, S. Juneja, A.K.Gupta, S. Sudhakar and K. Patel,Optimization of band gap, thickness and carrier concentrations for the development of efficient microcrystalline silicon solar cells:A theoretical approach,SolarEnergy,97 (2013) 176– 185.
A. Morales-Acevedo, N. Hernández-Como and G. Casados-Cruz,Modeling solar cells:a method for improving their efficiency. Mater Science and Engineering B, 177 (2012)1430-1435.
N. Selmane, A.Cheknane, M. Aillerie, and Hikmat S. Hilal, Effect of ZnO-Based TCO on the Performance of aSi H(n)/a-Si H(i)/c-Si H(p)/Al BSF(p+)/Al Heterojunction Solar Cells ,Environmental Progress & Sustainable Energy,( 2018) ,DOI 10.1002/ep.13114
T. Zarede H. Lidjici,M. Fathi . A. Mahrane , Study and Simulation of the Heterojunction Thin Film Solar Cell aSi(n)/a-Si(i)/c-Si(p)/a-Si(i)/a-Si(p), Journal of Electronic Materials, 45(2016), , Issue 8, 3943–3948.
M. Izakiand T. Omi, Transparent zinc oxide films prepared by electrochemical reaction, Applied Physics Letters, 68 (1996) 2439.
A. Boughelout R. Macaluso I. CRUPI B. MEGNA,Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition Journal of Electronic Materials, 48 (2019) 4381-4388.
M. Boumaour S. Sali A. Bahfir S. Kermadi, L. Zougar, N. Ouarab, A. Larabi, Numerical Study of TCO/Silicon Solar Cells with Novel Back Surface Field, Journal of Electronic Materials, 45 (2016) 3929–3934.
N. BOUKORTT, S. PATANÈ, B. HADRI, ELECTRICAL Characterization of n-ZnO/c-Si 2D Heterojunction Solar Cell by Using TCAD Tools, Silicon, 10 (2018) 2193-2199.
K. Yoshikawa, Hayato Kawasaki, Wataru Yoshida, Toru Irie, Katsunori Konishi, Kunihiro Nakano, Toshihiko Uto, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu and Kenji Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy,2 (2017), Article number: 17032|
X. Wen, X.Zeng, W. Liao, Q. Lei,S. Yin, An approach for improving the carriers transport properties of a-Si:H/c-Si heterojunction solar cells with efficiency of more than 27%. Solar Energy, 96 (2013) 168-176.
W. Jianqiang, G. Hua, Z. Jian, M. Fanyingand Y. Qinghao, Investigation of an a-Si/c-Siinterface on a c-Si (P) substrate by simulation. Journal of Semiconductors,33 (2012) 033001/1-7.
S. Zhong, X. Hua, W. Shen, Simulation of high-efficiency crystalline silicon solar cells with homo-hetero junctions.IEEE Explore Digital Library: IEEE Trans Electron Devices, 60 (2013) 2104-2110.
N. Jensen, U. Rau, R. M. Hausner, S. Uppal, L. Oberbeck, R. B. Bergmann, and J. H. Werner, Recombination mechanisms in amorphous silicon/crystalline siliconheterojunction solar cells. Journal of Applied Physics,87 (2000) 2639-2645.
M.Tanaka, M.Taguchi, T.Matsuyama, T.Sawada, S.Tsuda, S. Nakano, H.Hanafusa and Y.Kuwano, Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Japanese Journal of Applied Physics,31 (1992) 3518-3522.