Utilisation du Modèle Agrométéorologique pour la Prévision des Rendements des Céréales au Mali : cas du mil, sorgho et maïs

  • Dramane COULIBALY1 Laboratoire d’Optique de Spectroscopie et des Sciences Atmosphériques (LOSSA)
  • Souleymane SANOGO Laboratoire d’Optique de Spectroscopie et des Sciences Atmosphériques (LOSSA)
  • Cheick Oumar SANOGO Laboratoire Génie des Matériaux et Procédés Associés (LGMPA), Ecole Polytechnique de l’Université de Nantes, France
  • Moussa KAREMBÉ Laboratoire d’Écologie Tropicale (LET)
  • Abdramane BA

Abstract

The conceptual models of yield prediction were made from water balance indices related to millet, sorghum and maize crops in the Sikasso, Ségou and Mopti departments. The objective is to use an agrometeorological model (AMS) to pre-calculate water balance indices from agrometeorological data. Crop yield data and water balance indices from AMS were combined to establish regression models. Conceptual models of yield prediction are configured from the combination of two to four water balance indices as explanatory variables. The water balance indices with a better predictability of yields are: TWR (total water requirements of the plant), INDXhar (end-of-cycle water satisfaction indices), Cr1a (Decades to which the Rangeland index crosses the line defined by 0.4*PET), WEXt (total value of water excess at the end of the cycle), SWi (Initial content in soil water) and ETA (Actual evapotranspiration at initialization, stages, flowering and harvesting). The best models developed were validated by comparing their estimates to actual values of returns. The cross-validation of the millet yield forecast model of the Ségou circle indicates the following statistics: R²cv = 0.51, RMSE = 144 Kg/ha and the statistics are R²cv = 0.45, RMSE = 137 Kg/ha for the sorghum from the circle of Sikasso. On the other hand, the validation statistics are not very significant for the Mopti circle with coefficients of determination R²cv = 0.27; R²cv = 0.20 and R²cv = 0.16 respectively for millet, sorghum and maize. In this study, conceptual predictive models developed from agronomic and climatic data provided acceptable estimates of millet, sorghum and maize crop yields in the Sikasso, Ségou and Mopti departments.

References

Banque mondiale, Rapport annuel de la Banque mondiale - Rapport annuel 2007

Dewbre J et A. B. Battisti . Progrès agricole au Cameroun au Ghana et au Mali. Comprendre les causes et maintenir la dynamique. Oecd 2004.

FAO. Intégrer les questions de genre dans le secteur forestier en Afrique, Mali, 2007.

Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34.

Jlibene M. et R. Balaghi. Le risque sécheresse en agriculture pluviale : cas des céréales. Transfert de Technologie en Agriculture, 2009, n°181.

Rojas O, F. Rembold, A. Royer, and T. Negre. Real-time agro-meteorological crop yield monitoring in Eastern Africa. Agronomie 2005, DOI: 10.1051/agro:2004056

RAMDE O. L'alerte précoce et la prévision des rendements agricoles au Burkina Faso : cas de trois provinces Passoré, Yatenga et Soum. 2009. Mémoire de master).

Bronne, C.E., Wellens, J., Diakité, M., Farid, T., Diallo, M. et Tychon1, B. Elaboration d’un modèle de prévision des rendements cotonniers dans la province du Houet, Burkina Faso: 2009.

Kouadio. Prévision de la production nationale d’arachide au Sénégal à partir du modèle agrométéorologique AMS et du NDVI. Des interuniversitaire en gestion des risques naturels, ULiege : 2007

Gaye A., Viltard, de Félice. Lignes de grains et pluies en Afrique de l’Ouest : variations diurnes. Sécheresse 2004 ; 15 (3) : 287-92

Durodola O.S and K. A. Mourad. Modelling Maize Yield and Water Requirements under Different Climate Change Scenarios. Climate 2020, 8, 127

Published
2022-01-06
Section
Articles