Analysis of cyclical behavior of cash flows
Abstract
Cash flows have special statistical and chronological properties, which are not found in other
financial markets. This article aims to treat and analyze cyclical informational shocks of cash
flows through the search for conditional heteroskedasticity on the basis of a class of ARMA
models with GARCH error which gives useful information on the nature and amplitude of
different informational shocks.
Downloads
References
Akaike, H. (1970), Statistical Predictor Identification, Annals of Institute of Statistical Mathematics, 22, 203 217.
Andersen, T. G., T. Bollerslev, P. F. Christo®ersen, and F. X. Diebold. (2006), Volatility and correlation forecasting. In G. Elliott, C. W. J. Granger, and A. Timmermann (eds.), Handbook of Economic Forecasting, Amsterdam: North-Holland, 778{878).
Andrews, D. W. K., et P. Guggenberger (2003), A Bias-Reduced Log-Periodogram Regression Estimator for the Long-memory Parameter, Econometrica, 71, 675-712.
Beran, J. (1994). Statistics for long-memory processes. Chapman & Hall, New York.
Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short- and long-memory ARIMA models. J. Roy. Statist. Soc. B, 57, 672-695.
Beran, J., Bhansali, R.J., Ocker, D. (1998). On unified model selection for stationary and nonstationary short-and long-memory autoregressive processes. Biometrika, 85, 921–934.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Hetreoskedasticity. J. Econometrics, 31, 307-327.
Bourbonnais, R et Terraza, M. (1998), Analyse des séries temporelles en économie, Paris : PUF.
Bresson, G et Michaud, G.C. (1995), Econométrie des séries temporelles Théorie et application, Paris : P.U.F.
Brock, W.A, Dechert, W.D, Scheinkman, J.A and LeBaron, B. (1996),
Chen, M. and An, H.Z. (1998). A note on the stationarity and the existence of moments of the GARCH model. Statistica Sinica, 8, 505–510.
Davidson, J., Terasvirta, T.T. (Eds.), (2002), Long Memory and Nonlinear Time Series, Journal of Econometrics, 110 (2) 105–437.
Droesbeke, J.J, Fichet, B et Tassi, P. (1994), Modélisation ARCH : Théorie statistique et applications dans le domaine de la finance, Belgique : Editions de l'universite de Bruxelles.
Engle, R.F. (1982). Autoregressive conditional heteroskedasticity with estimation of U.K. inflation. Econometrica, 50 987–1008.
Feng, Y. (2004). Non- and Semiparametric Regression with Fractional Time Series Errors – 22 Theory and Applications to Financial Data. Habilitation Monograph, University of Konstanz.
Fox R. et Taqqu M.S. (1986), Large Sample properties of Parameter Estimates for Strongly Dependant Stationary Gaussian Time Series, Annals of Statistics, 14, 517-532.
Geweke, J., Porter-Hudak,S., (1983), The estimation and application of long-memory time series models, Journal of Time Series Analysis, 4, 221-238.
Gourieroux, C. et Monfort, A. (1995), Séries temporelles et modèles dynamiques, Paris : Economica.
Gourieroux, C. (1992), Modèles ARCH et application financière, Paris : Economica..
Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal, 1, 15-30.
Guy, M. (1990), Méthodes de prévision à court terme, Bruxelles : Edition Ellipses
Hosking, J. R. M. (1981), Fractional differencing. Biometrika, 68, 165–176.
Lavoyer, J.C et Ternisien, M. (1989), Le tableau des flux de trésorerie. La ville EGUERIN Editions, Paris.
Nelson, D.B. (1991), Conditional herteroskedasticity in Asset Returns: A new Approach. Econometrica, 59, 347–370.
Schwarz, G. (1978), Estimating the dimension of a Model. Annals of Statistics, 6,461-464.
Tsai, H., and K.-S. Chan. (2007), A note on inequality constraints in the GARCH model, Technical Report No 361, Department of Statistics & Actuarial Science, The University of Iowa.
Robinson, P.M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J. Econometr., 47, 6784.
, GARCH, , Cash, Cyclical shocks
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.