Modeling The Volatility of DAX30 Index Using EGARCH Model

  • Djazia Arab Blida University
  • Bachir Belghait Blida University
Keywords: e volatility, returns, stylized facts, GARCH model, EGARCH(1,1) model

Abstract

Financial time series exhibit a number of characteristics, the most important of which are volatility clustering, heavy tail of underlying distribution, and the leverage effect. Nevertheless, both models failed to properly model the leverage effect. Although the literature has seen many proposed models, perhaps the most striking of these models is the Asymmetric EGARCH model. Its ability to account for the asymmetric effect of good and bad news on volatility has made it one of the most adopted model for volatility. In this paper, we will attempt to model the daily returns of the DAX30 index for the period between 2014 and 2019 using the EGARCH model on a sample of 1264 observations. We show that this model is far more superior in capturing the leverage effect than alternative conditional volatility models.

Downloads

Download data is not yet available.

References

بشير بلغيث، و صدر الدين صواليلي. (2018). نمذجة تقلبات العوائد اليومية لمؤشر CAC40 بتطبيق نموذج APGARCH. Revue des réforme economique et intégration en economie mondiale ، العدد 13 الرقم 26.

محمد شيخي، و علي بن ضب. (2017). الاقتصاد القياسي المالي وتطبيقاته في الأسواق المالية (المجلد الطبعة الأولى). عمان، الأردن: دار حامد للنشر والتوزيع.

Belghith, B, & Soualili, S. (2018). modeling the volatility of daily return of cac40 index using APAGARCH model. Reform economic & integration of economie international. Volume 13 N°26.

Chikhi, M, & Ben dab, A. (2017). Financial econometrics and its applications in financial markets. 1st edition , Amman Jordani: edition hamid.

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics , volume 31 ; Issue 03.

Bourse de Francfort. (2019). Consulté le février 17, 2019, sur edu bourse: https://www.edubourse.com/auide-bourse/bourse-de-francfort.php

Cont, R. (2006). Volatility clustering in financial markets empirical facts and agent based models. centre de mathématique appliqués , E-91128.

Contents, C. (20 septembre 1993). This Weeks Citation Classic. cc/ number 38.

Dahlvid, C., & Granberg, P. (2017). The Leverage Effect : Uncovering the true nature of U.S asymmetric volatility. Finance. U.S.A: Lund University.

Daily, F. (2018). DAX 30. Consulté le Mars 03, 2019, sur Daily FX: https://www.dailyfx.com/français/dax-30

Danielsson, J. (2001). Financial Risk Forecasting. Chicago: Wiley Finance John Wiley & Sons LTD.

Glosten, L., Jagannathan, R., & Run, D. (1993). On The Relation between the expected value and the volatility of nominal excess return on stocks. the of Finance , 48 (05).

Gujarati, D. (2011). Econometrics by example. British Library: Palgrave Macmillan First published.

Nelson, D. (1991). Conditional Heteroskedasticity in Asset Return a new Approach. Econometrica , 59 (02), 347-370.

P Sidorov, S. (2010). An investigation into using news analytics data in GARCH type volatility models. London: BRUNEL University.

Panait, I. O. (2012). Using GARCH-in-Mean Model to investigate volatility and persistence at different frequencies for Bucharest stock exchange 1997-2012. Theoretical and applied economies volume xix n°05 .

Salisu, A. (2019, Janvier 28). Asymmetric GARCH Models. Retrieved septembre 27, 2019, from research gate: https://www.researchgate.net

Saltoglu, B. (2017). Volatility Modelling. Econometrics of Finance , EC 58 d.

Tsay, R. (2002). Analysis of financial time series. University of chicago: John Wiley & Sons INC.

Published
2020-06-18
How to Cite
Arab, D., & Belghait, B. (2020). Modeling The Volatility of DAX30 Index Using EGARCH Model. Dirassat Journal Economic Issue, 11(2), 269-285. https://doi.org/10.5281/zenodo.3898940
Section
Articles